Davidson Martins Moreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2827077/publications.pdf Version: 2024-02-01

		393982	433756
88	1,318	19	31
papers	citations	h-index	g-index
92	92	92	556
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Exposure and dose assessment of school children to air pollutants in a tropical coastal-urban area. Science of the Total Environment, 2022, 803, 149747.	3.9	9
2	Network dynamic and stability on European Union. Physica A: Statistical Mechanics and Its Applications, 2022, 587, 126532.	1.2	5
3	Wind mapping using the mesoscale WRF model in a tropical region of Brazil. Energy, 2022, 240, 122491.	4.5	8
4	Long-range correlations of the wind speed in a northeast region of Brazil. Energy, 2022, 243, 122742.	4.5	4
5	An Approach for the Atmospheric Pollutant Dispersion Equation Considering Anomalous Diffusion in Strongly Unstable Conditions. Pure and Applied Geophysics, 2022, 179, 1433-1443.	0.8	1
6	Coastal-urban meteorology: A sensitivity study using the WRF-urban model. Urban Climate, 2022, 44, 101185.	2.4	4
7	Scaling behavior of wind speed in the coast of Brazil and the South Atlantic Ocean: The crossover phenomenon. Energy, 2021, 217, 119413.	4.5	3
8	An investigation on deep learning and wavelet transform to nowcast wind power and wind power ramp: A case study in Brazil and Uruguay. Energy, 2021, 230, 120842.	4.5	28
9	Source apportionment modelling of PM2.5 using CMAQ-ISAM over a tropical coastal-urban area. Atmospheric Pollution Research, 2021, 12, 101250.	1.8	13
10	Simulation of atmospheric pollutant dispersion considering a bi-flux process and fractional derivatives. Atmospheric Pollution Research, 2020, 11, 57-66.	1.8	5
11	Traffic data in air quality modeling: A review of key variables, improvements in results, open problems and challenges in current research. Atmospheric Pollution Research, 2020, 11, 454-468.	1.8	35
12	Nowcasting prediction of wind speed using computational intelligence and wavelet in Brazil. International Journal for Computational Methods in Engineering Science and Mechanics, 2020, 21, 343-369.	1.4	9
13	Fractional Derivatives in Geophysical Modelling: Approaches Using the Modified Adomian Decomposition Method. Pure and Applied Geophysics, 2020, 177, 4309-4323.	0.8	3
14	Influence of land use on the performance of the WRF model in a humid tropical climate. Theoretical and Applied Climatology, 2020, 141, 201-214.	1.3	5
15	A Model Using Fractional Derivatives with Vertical Eddy Diffusivity Depending on the Source Distance Applied to the Dispersion of Atmospheric Pollutants. Pure and Applied Geophysics, 2019, 176, 1797-1806.	0.8	7
16	New approach to handle gas-particle transformation in air pollution modelling using fractional derivatives. Atmospheric Pollution Research, 2019, 10, 1577-1587.	1.8	8
17	Short-term wind speed forecasting in Uruguay using computational intelligence. Heliyon, 2019, 5, e01664.	1.4	29
18	Performance evaluation of a photochemical model using different boundary conditions over the urban and industrialized metropolitan area of Vitória, Brazil. Environmental Science and Pollution Research, 2019, 26, 16125-16144.	2.7	22

DAVIDSON MARTINS MOREIRA

#	Article	IF	CITATIONS
19	Mathematical Model Using Fractional Derivatives Applied to the Dispersion of Pollutants in the Planetary Boundary Layer. Boundary-Layer Meteorology, 2019, 170, 285-304.	1.2	10
20	Analysis of long-range correlations of wind speed in different regions of Bahia and the Abrolhos Archipelago, Brazil. Energy, 2019, 167, 680-687.	4.5	13
21	Study of the Impact of the Topology of Artificial Neural Networks for the Prediction of Meteorological Data. , 2019, , 201-214.		2
22	A New Direction in the Atmospheric Pollutant Dispersion inside the Planetary Boundary Layer. Journal of Applied Meteorology and Climatology, 2018, 57, 185-192.	0.6	16
23	Simulated Dispersion of the Gas Released by the SpaceX Falcon9 Rocket Explosion. Journal of Spacecraft and Rockets, 2018, 55, 1528-1536.	1.3	6
24	WRF-SMOKE-CMAQ modeling system for air quality evaluation in São Paulo megacity with a 2008 experimental campaign data. Environmental Science and Pollution Research, 2018, 25, 36555-36569.	2.7	31
25	Inventário de Emissões com Alta Resolução para a Região da Grande Vitória Utilizando o Sistema de Modelagem Integrada WRF-SMOKE-CMAQ. Revista Brasileira De Meteorologia, 2018, 33, 521-536.	0.2	6
26	Conformable Laplace Transform of Fractional Differential Equations. Axioms, 2018, 7, 55.	0.9	56
27	EVALUATION OF THE CHEMICAL TRANSPORT OF AIR POLLUTANTS IN THE METROPOLITAN REGION OF SALVADOR, BRAZIL. , 2018, , .		3
28	Fractional derivative models for atmospheric dispersion of pollutants. Physica A: Statistical Mechanics and Its Applications, 2017, 477, 9-19.	1.2	48
29	Analysis of the interface configuration and flow characteristics in tanks in a multiphase liquid–gas system using numerical simulation. Journal of Turbulence, 2017, 18, 688-716.	0.5	1
30	The development of a new model to simulate the dispersion of rocket exhaust clouds. Aerospace Science and Technology, 2017, 69, 298-312.	2.5	4
31	Um Estudo Comparativo Entre Coeficientes de Difusão Verticais na Simulação da Dispersão de Poluentes em uma Camada Limite Convectiva. Revista Brasileira De Meteorologia, 2016, 31, 518-526.	0.2	Ο
32	Solution of the Atmospheric Diffusion Equation with Longitudinal Wind Speed Depending on Source Distance. Revista Brasileira De Meteorologia, 2016, 31, 202-210.	0.2	5
33	Evaluation of weather research and forecasting model parameterizations under sea-breeze conditions in a North Sea coastal environment. Journal of Meteorological Research, 2016, 30, 998-1018.	0.9	22
34	Study of the Thermal Internal Boundary Layer in Sea Breeze Conditions Using Different Parameterizations: Application of the WRF Model in the Greater Vitória Region. Revista Brasileira De Meteorologia, 2016, 31, 593-609.	0.2	20
35	A Model for Turbulent Diffusion in a Vertically Inhomogeneous Atmospheric Boundary Layer. Revista Virtual De Quimica, 2016, 8, 1220-1233.	0.1	0
36	Simulation of Rocket Exhaust Clouds at the Centro de Lançamento de Alcântara Using the WRF-CMAQ Modeling System. Journal of Aerospace Technology and Management, 2014, 6, 119-128.	0.3	4

#	Article	IF	CITATIONS
37	A contribution to solve the atmospheric diffusion equation with eddy diffusivity depending on source distance. Atmospheric Environment, 2014, 83, 254-259.	1.9	29
38	A solution of nonlinear equation for the gravity wave spectra from Adomian decomposition method: a first approach. Revista Brasileira De Meteorologia, 2013, 28, 357-363.	0.2	0
39	A model employing integral transform method to simulate pollutant dispersion in atmosphere. Revista Brasileira De Meteorologia, 2013, 28, 373-381.	0.2	0
40	A general formulation for pollutant dispersion in the atmosphere. Journal of Engineering Mathematics, 2012, 74, 159-173.	0.6	11
41	On the new parameterisation of the eddy diffusivity for radioactive pollutant dispersion. International Journal of Nuclear Energy Science and Technology, 2011, 6, 166.	0.2	1
42	On the Time Evolution of the Turbulent Kinetic Energy Spectrum for Decaying Turbulence in the Convective Boundary Layer. Boundary-Layer Meteorology, 2011, 138, 61-75.	1.2	17
43	A multilayer model to simulate rocket exhaust clouds. Journal of Aerospace Technology and Management, 2011, 3, 41-52.	0.3	10
44	Comparison between analytical models to simulate pollutant dispersion in the atmosphere. International Journal of Environment and Waste Management, 2010, 6, 327.	0.2	9
45	Tritium dispersion simulation in the atmosphere by the integral transform technique using micrometeorological parameters generated by large eddy simulation. International Journal of Nuclear Energy Science and Technology, 2010, 5, 11.	0.2	1
46	Modelling the photochemical pollution over the metropolitan area of Porto Alegre, Brazil. Atmospheric Environment, 2010, 44, 370-380.	1.9	11
47	A multi-layer model for pollutant dispersion with dry deposition to the ground. Atmospheric Environment, 2010, 44, 1859-1865.	1.9	19
48	Some characteristics of a plume from a point source based on analytical solution of the two-dimensional advection–diffusion equation. Atmospheric Environment, 2009, 43, 2221-2227.	1.9	14
49	The state-of-art of the GILTT method to simulate pollutant dispersion in the atmosphere. Atmospheric Research, 2009, 92, 1-17.	1.8	79
50	A semi-analytical solution for the three-dimensional advection–diffusion equation considering non-local turbulence closure. Atmospheric Research, 2008, 90, 63-69.	1.8	19
51	A Two-Dimensional Solution of the Advection–Diffusion Equation with Dry Deposition to the Ground. Journal of Applied Meteorology and Climatology, 2008, 47, 2096-2104.	0.6	22
52	An analytical solution for the nonlinear energy spectrum equation by the decomposition method. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 425205.	0.7	3
53	Meteorologia e poluição atmosférica. Ambiente & Sociedade, 2008, 11, 1-13.	0.5	7
54	Solutions of the Atmospheric Advection–Diffusion Equation by the Laplace Transformation. , 2008, ,		0

171-180.

#	Article	IF	CITATIONS
55	Poster 22 Two-dimensional steady state advection-diffusion equation: An analytical solution. Developments in Environmental Science, 2007, 6, 802-804.	0.5	0
56	Poster 23 The new GIADMT approach to simulate the pollutant dispersion in the planetary boundary layer. Developments in Environmental Science, 2007, 6, 805-807.	0.5	1
57	Poster 24 One-dimensional eddy diffusivities for growing turbulence in the convective boundary layer. Developments in Environmental Science, 2007, 6, 808-810.	0.5	0
58	Tritium dispersion simulation in the atmosphere from ANGRA I Nuclear Power Plant. International Journal of Nuclear Energy Science and Technology, 2007, 3, 118.	0.2	5
59	Poster 26 An air pollution model applying a semi-analytical solution for low wind conditions. Developments in Environmental Science, 2007, , 814-816.	0.5	0
60	Derivation of a decorrelation timescale depending on source distance for inhomogeneous turbulence in a convective boundary layer. Physica A: Statistical Mechanics and Its Applications, 2007, 374, 55-65.	1.2	3
61	Simulation of pollutant dispersion for low wind conditions in stable and convective planetary boundary layer. Atmospheric Environment, 2007, 41, 5496-5501.	1.9	27
62	An analytical solution of the advection-diffusion equation considering non-local turbulence closure. Environmental Fluid Mechanics, 2007, 7, 43-54.	0.7	18
63	A new model for the CBL growth based on the turbulent kinetic energy equation. Environmental Fluid Mechanics, 2007, 7, 409-419.	0.7	2
64	Comparison between Eulerian and Lagrangian semi-analytical models to simulate the pollutant dispersion in the PBL. Applied Mathematical Modelling, 2007, 31, 120-129.	2.2	11
65	Simulation of Pollutant Dispersion in the Atmosphere by the Laplace Transform: The ADMM Approach. Water, Air, and Soil Pollution, 2006, 177, 411-439.	1.1	38
66	The GILTT solution of the advection–diffusion equation for an inhomogeneous and nonstationary PBL. Atmospheric Environment, 2006, 40, 3186-3194.	1.9	44
67	Semi-analytical solution of the steady three-dimensional advection-diffusion equation in the planetary boundary layer. Atmospheric Environment, 2006, 40, 5659-5669.	1.9	56
68	An iterative Langevin solution for contaminant dispersion simulation using the Gram–Charlier PDF. Environmental Modelling and Software, 2005, 20, 285-289.	1.9	11
69	Analytical solution of the Eulerian dispersion equation for nonstationary conditions: development and evaluation. Environmental Modelling and Software, 2005, 20, 1159-1165.	1.9	12
70	Analytical solution of the advection–diffusion equation with nonlocal closure of the turbulent diffusion. Environmental Modelling and Software, 2005, 20, 1347-1351.	1.9	10
71	A semi-analytical model for the tritium dispersion simulation in the PBL from the Angra I nuclear power plant. Ecological Modelling, 2005, 189, 413-424.	1.2	10
72	On the universality of the dissipation rate functional form and of the autocorrelation function exponential form. Atmospheric Environment, 2005, 39, 1917-1924.	1.9	7

#	Article	IF	CITATIONS
73	A new analytical approach to simulate the pollutant dispersion in the PBL. Atmospheric Environment, 2005, 39, 2171-2178.	1.9	81
74	Semi-analytical model for pollution dispersion in the planetary boundary layer. Atmospheric Environment, 2005, 39, 2673-2681.	1.9	32
75	Plume dispersion simulation in low wind conditions in stable and convective boundary layers. Atmospheric Environment, 2005, 39, 3643-3650.	1.9	46
76	Near-source atmospheric pollutant dispersion using the new GILTT method. Atmospheric Environment, 2005, 39, 6289-6294.	1.9	63
77	Simulation of the Dispersion of Pollutants Using two Approaches for the Case of a Low Source in the Sbl: Evaluation of Turbulence Parameterisations. Water, Air, and Soil Pollution, 2005, 161, 285-297.	1.1	12
78	An Alternative Numerical Approach to Solve the Langevin Equation Applied to Air Pollution Dispersion. Water, Air, and Soil Pollution, 2005, 163, 103-118.	1.1	8
79	Derivation of eddy diffusivities from an unsteady turbulence spectrum. Atmospheric Environment, 2004, 38, 6121-6124.	1.9	15
80	Derivation of an eddy diffusivity depending on source distance under moderately unstable conditions. Revista Brasileira De Geofisica, 2002, 20, 113-121.	0.2	0
81	Evaluation of a new eddy diffusivity parameterisation from turbulent Eulerian spectra in different stability conditions. Atmospheric Environment, 2002, 36, 67-76.	1.9	42
82	A comparison of two turbulent dispersion parameterisations in the stable boundary layer using Lagrangian and Eulerian models. Revista Brasileira De Geofisica, 2002, 20, 104-112.	0.2	1
83	Derivation of an Eddy Diffusivity Depending on Source Distance for Vertically Inhomogeneous Turbulence in a Convective Boundary Layer. Journal of Applied Meteorology and Climatology, 2001, 40, 1233-1240.	1.7	56
84	On the Analytical Formulations for Pollutant Dispersion Simulation in the Atmospheric Boundary Layer. , 0, , .		0
85	Study of the Wind Speed Forecasting Applying Computational Intelligence. , 0, , .		4
86	Evaluating the Impact of Large Eddy Simulations in Rocket Exhaust Modeling. , 0, , .		1
87	PREVISÃ f O DA VELOCIDADE DO VENTO A CURTO PRAZO EM REGIÃ f O TROPICAL UTILIZANDO WAVELETS E INTELIGÃ ŠNCIA ARTIFICIAL. , 0, , .		2
88	MODELOS MATEMÃTICOS: UM MECANISMO DE GESTÃFO AMBIENTAL. , 0, , .		0