
James A Bourne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2826975/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modelling behaviors relevant to brain disorders in the nonhuman primate: Are we there yet?. Progress in Neurobiology, 2022, 208, 102183.	2.8	8
2	Mapping the neural circuitry of predator fear in the nonhuman primate. Brain Structure and Function, 2021, 226, 195-205.	1.2	15
3	Retinal ganglion cells projecting to superior colliculus and pulvinar in marmoset. Brain Structure and Function, 2021, 226, 2745-2762.	1.2	14
4	Sexually dimorphic perineuronal nets in the rodent and primate reproductive circuit. Journal of Comparative Neurology, 2021, 529, 3274-3291.	0.9	13
5	Visual Cortical Area MT Is Required for Development of the Dorsal Stream and Associated Visuomotor Behaviors. Journal of Neuroscience, 2021, 41, 8197-8209.	1.7	6
6	Replicating infant-specific reactive astrocyte functions in the injured adult brain. Progress in Neurobiology, 2021, 204, 102108.	2.8	2
7	The medial pulvinar. , 2021, , 347-357.		1
8	NogoA-expressing astrocytes limit peripheral macrophage infiltration after ischemic brain injury in primates. Nature Communications, 2021, 12, 6906.	5.8	14
9	Extensive Connectivity Between the Medial Pulvinar and the Cortex Revealed in the Marmoset Monkey. Cerebral Cortex, 2020, 30, 1797-1812.	1.6	22
10	The Age-Dependent Neural Substrates of Blindsight. Trends in Neurosciences, 2020, 43, 242-252.	4.2	11
11	The Marmoset: The Next Frontier in Understanding the Development of the Human Brain. ILAR Journal, 2020, 61, 248-259.	1.8	6
12	Cover Image, Volume 527, Issue 3. Journal of Comparative Neurology, 2019, 527, C1.	0.9	0
13	The medial pulvinar: function, origin and association with neurodevelopmental disorders. Journal of Anatomy, 2019, 235, 507-520.	0.9	51
14	Thalamocortical Afferents Innervate the Cortical Subplate much Earlier in Development in Primate than in Rodent. Cerebral Cortex, 2019, 29, 1706-1718.	1.6	26
15	Prehensile kinematics of the marmoset monkey: Implications for the evolution of visuallyâ€guided behaviors. Journal of Comparative Neurology, 2019, 527, 1495-1507.	0.9	11
16	Retinotopic specializations of cortical and thalamic inputs to area MT. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23326-23331.	3.3	24
17	A Hox Code Defines Spinocerebellar Neuron Subtype Regionalization. Cell Reports, 2019, 29, 2408-2421.e4.	2.9	13
18	More than blindsight: Case report of a child with extraordinary visual capacity following perinatal bilateral occipital lobe iniury. Neuropsychologia, 2019, 128, 178-186.	0.7	24

James A Bourne

#	Article	IF	CITATIONS
19	Unravelling the subcortical and retinal circuitry of the primate inferior pulvinar. Journal of Comparative Neurology, 2019, 527, 558-576.	0.9	35
20	Acute or Delayed Systemic Administration of Human Amnion Epithelial Cells Improves Outcomes in Experimental Stroke. Stroke, 2018, 49, 700-709.	1.0	53
21	Transient visual pathway critical for normal development of primate grasping behavior. Proceedings of the United States of America, 2018, 115, 1364-1369.	3.3	51
22	The Involvement of the Myelin-Associated Inhibitors and Their Receptors in CNS Plasticity and Injury. Molecular Neurobiology, 2018, 55, 1831-1846.	1.9	44
23	Higher order thalamic nuclei resting network connectivity in early schizophrenia and major depressive disorder. Psychiatry Research - Neuroimaging, 2018, 272, 7-16.	0.9	20
24	Full: Ontogenesis and development of the nonhuman primate pulvinar. Journal of Comparative Neurology, 2018, 526, 2870-2883.	0.9	12
25	Cover Image, Volume 526, Issue 17. Journal of Comparative Neurology, 2018, 526, C1.	0.9	0
26	Reduced post-stroke glial scarring in the infant primate brain reflects age-related differences in the regulation of astrogliosis. Neurobiology of Disease, 2018, 111, 1-11.	2.1	8
27	Current opinion on a role of the astrocytes in neuroprotection. Neural Regeneration Research, 2018, 13, 797.	1.6	7
28	Ephrin-A2 regulates excitatory neuron differentiation and interneuron migration in the developing neocortex. Scientific Reports, 2017, 7, 11813.	1.6	9
29	954. Higher Order Thalamic Nuclei Resting Network Connectivity in First Episode Schizophrenia and Major Depressive Disorder. Biological Psychiatry, 2017, 81, S386.	0.7	0
30	The marmoset: An emerging model to unravel the evolution and development of the primate neocortex. Developmental Neurobiology, 2017, 77, 263-272.	1.5	19
31	Plasticity of Visual Pathways and Function in the Developing Brain: Is the Pulvinar a Crucial Player?. Frontiers in Systems Neuroscience, 2017, 11, 3.	1.2	27
32	The temporal profile of retinal cell genesis in the marmoset monkey. Journal of Comparative Neurology, 2016, 524, 1193-1207.	0.9	6
33	Australians rush to reject primate bill. Nature, 2016, 531, 35-35.	13.7	1
34	In vivo whole brain, cellular and molecular imaging in nonhuman primate models of neuropathology. Neuroscience and Biobehavioral Reviews, 2016, 66, 104-118.	2.9	15
35	Australian Brain Alliance. Neuron, 2016, 92, 597-600.	3.8	18
36	MRI-guided stereotaxic brain surgery in the infant and adult common marmoset. Nature Protocols, 2016, 11, 1299-1308.	5.5	36

JAMES A BOURNE

#	Article	IF	CITATIONS
37	Adaptive Pulvinar Circuitry Supports Visual Cognition. Trends in Cognitive Sciences, 2016, 20, 146-157.	4.0	138
38	Mapping the mosaic sequence of primate visual cortical development. Frontiers in Neuroanatomy, 2015, 9, 132.	0.9	30
39	Preservation of Vision by the Pulvinar following Early-Life Primary Visual Cortex Lesions. Current Biology, 2015, 25, 424-434.	1.8	99
40	Retrograde transneuronal degeneration in the retina and lateral geniculate nucleus of the V1-lesioned marmoset monkey. Brain Structure and Function, 2015, 220, 351-360.	1.2	56
41	Mapping arealisation of the visual cortex of non-primate species: lessons for development and evolution. Frontiers in Neural Circuits, 2014, 8, 79.	1.4	16
42	A Reproducible and Translatable Model of Focal Ischemia in the Visual Cortex of Infant and Adult Marmoset Monkeys. Brain Pathology, 2014, 24, 459-474.	2.1	29
43	EphA4 is associated with multiple cell types in the marmoset primary visual cortex throughout the lifespan. European Journal of Neuroscience, 2014, 39, 1419-1428.	1.2	10
44	The Guidance Molecule Semaphorin3A is Differentially Involved in the Arealization of the Mouse and Primate Neocortex. Cerebral Cortex, 2014, 24, 2884-2898.	1.6	16
45	Endogenous neurogenesis following ischaemic brain injury: Insights for therapeutic strategies. International Journal of Biochemistry and Cell Biology, 2014, 56, 4-19.	1.2	36
46	Relationship between Size Summation Properties, Contrast Sensitivity and Response Latency in the Dorsomedial and Middle Temporal Areas of the Primate Extrastriate Cortex. PLoS ONE, 2013, 8, e68276.	1.1	15
47	Over-expression of RCAN1 causes Down syndrome-like hippocampal deficits that alter learning and memory. Human Molecular Genetics, 2012, 21, 3025-3041.	1.4	71
48	Compartmentalization of Cerebral Cortical Germinal Zones in a Lissencephalic Primate and Gyrencephalic Rodent. Cerebral Cortex, 2012, 22, 482-492.	1.6	138
49	The Early Maturation of Visual Cortical Area MT is Dependent on Input from the Retinorecipient Medial Portion of the Inferior Pulvinar. Journal of Neuroscience, 2012, 32, 17073-17085.	1.7	146
50	The Early Postnatal Nonhuman Primate Neocortex Contains Self-Renewing Multipotent Neural Progenitor Cells. PLoS ONE, 2012, 7, e34383.	1.1	19
51	Models of CNS injury in the nonhuman primate: A new era for treatment strategies. Translational Neuroscience, 2012, 3, .	0.7	15
52	Discrete ephrinâ€B1 expression by specific layers of the primate retinogeniculostriate system continues throughout postnatal and adult life. Journal of Comparative Neurology, 2012, 520, 2941-2956.	0.9	7
53	Breaking camouflage: responses of neurons in the middle temporal area to stimuli defined by coherent motion. European Journal of Neuroscience, 2012, 36, 2063-2076.	1.2	22
54	Visual motion integration by neurons in the middle temporal area of a New World monkey, the marmoset. Journal of Physiology, 2011, 589, 5741-5758.	1.3	46

JAMES A BOURNE

#	Article	IF	CITATIONS
55	Immunohistochemical parcellation of the ferret (<i>Mustela putorius</i>) visual cortex reveals substantial homology with the cat (<i>Felis catus</i>). Journal of Comparative Neurology, 2010, 518, 4439-4462.	0.9	42
56	Genetic modulation of TLR8 response following bacterial phagocytosis. Human Mutation, 2010, 31, 1069-1079.	1.1	67
57	Unravelling the development of the visual cortex: implications for plasticity and repair. Journal of Anatomy, 2010, 217, 449-468.	0.9	48
58	Retinal afferents synapse with relay cells targeting the middle temporal area in the pulvinar and lateral geniculate nuclei. Frontiers in Neuroanatomy, 2010, 4, 8.	0.9	102
59	Upregulation of EphA4 on Astrocytes Potentially Mediates Astrocytic Gliosis after Cortical Lesion in the Marmoset Monkey. Journal of Neurotrauma, 2010, 27, 1321-1332.	1.7	44
60	Anatomical changes in the primary visual cortex of the congenitally blind Crxâ^'/â^' mouse. Neuroscience, 2010, 166, 886-898.	1.1	8
61	Connections of the Dorsomedial Visual Area: Pathways for Early Integration of Dorsal and Ventral Streams in Extrastriate Cortex. Journal of Neuroscience, 2009, 29, 4548-4563.	1.7	114
62	The rat temporal association cortical area 2 (Te2) comprises two subdivisions that are visually responsive and develop independently. Neuroscience, 2008, 156, 118-128.	1.1	18
63	Spatial Summation, End Inhibition and Side Inhibition in the Middle Temporal Visual Area (MT). Journal of Neurophysiology, 2007, 97, 1135-1148.	0.9	21
64	Distribution and morphology of cholinergic, putative catecholaminergic and serotonergic neurons in the brain of the Egyptian rousette flying fox, Rousettus aegyptiacus. Journal of Chemical Neuroanatomy, 2007, 34, 108-127.	1.0	53
65	Chemoarchitecture of the middle temporal visual area in the marmoset monkey (Callithrix jacchus): Laminar distribution of calcium-binding proteins (calbindin, parvalbumin) and nonphosphorylated neurofilament. Journal of Comparative Neurology, 2007, 500, 832-849.	0.9	44
66	Development of non-phosphorylated neurofilament protein expression in neurones of the New World monkey dorsolateral frontal cortex. European Journal of Neuroscience, 2007, 25, 1767-1779.	1.2	34
67	Spatial and temporal frequency selectivity of neurons in the middle temporal visual area of new world monkeys (Callithrix jacchus). European Journal of Neuroscience, 2007, 25, 1780-1792.	1.2	62
68	Hierarchical Development of the Primate Visual Cortex, as Revealed by Neurofilament Immunoreactivity: Early Maturation of the Middle Temporal Area (MT). Cerebral Cortex, 2006, 16, 405-414.	1.6	179
69	Functional Response Properties of Neurons in the Dorsomedial Visual Area of New World Monkeys (Callithrix jacchus). Cerebral Cortex, 2006, 16, 162-177.	1.6	111
70	Resolving the organization of the New World monkey third visual complex: The dorsal extrastriate cortex of the marmoset (Callithrix jacchus). Journal of Comparative Neurology, 2005, 483, 164-191.	0.9	70
71	Single-unit responses to kinetic stimuli in New World monkey area V2: Physiological characteristics of cue-invariant neurones. Experimental Brain Research, 2005, 162, 100-108.	0.7	23
72	Topographic and Laminar Maturation of Striate Cortex in Early Postnatal Marmoset Monkeys, as Revealed by Neurofilament Immunohistochemistry. Cerebral Cortex, 2005, 15, 740-748.	1.6	53

#	Article	IF	CITATIONS
73	First- and second-order stimulus length selectivity in New World monkey striate cortex. European Journal of Neuroscience, 2004, 19, 169-180.	1.2	11

Neurofilament protein expression in the geniculostriate pathway of a New World monkey (Callithrix) Tj ETQq000 rgBT /Overlock 10 Tf $\frac{2}{9}$

75	Laminar expression of neurofilament protein in the superior colliculus of the marmoset monkey (Callithrix jacchus). Brain Research, 2003, 973, 142-145.	1.1	19
76	Intracerebral microdialysis: 30 years as a tool for the neuroscientist. Clinical and Experimental Pharmacology and Physiology, 2003, 30, 16-24.	0.9	88
77	Preparation for the in vivo recording of neuronal responses in the visual cortex of anaesthetised marmosets (Callithrix jacchus). Brain Research Protocols, 2003, 11, 168-177.	1.7	39
78	Physiological Responses of New World Monkey V1 Neurons to Stimuli Defined by Coherent Motion. Cerebral Cortex, 2002, 12, 1132-1145.	1.6	32
79	Inter-arm differences in blood pressure: when are they clinically significant?. Journal of Hypertension, 2002, 20, 1089-1095.	0.3	147
80	SCH 23390 affords protection against soman-evoked seizures in the freely moving guinea-pig: a concomitant neurochemical, electrophysiological and behavioural study. Neuropharmacology, 2001, 40, 279-288.	2.0	15
81	Changes in striatal electroencephalography and neurochemistry induced by kainic acid seizures are modified by dopamine receptor antagonists. European Journal of Pharmacology, 2001, 413, 189-198.	1.7	8
82	SCH 23390: The First Selective Dopamine D ₁ ‣ike Receptor Antagonist. CNS Neuroscience & Therapeutics, 2001, 7, 399-414.	4.0	172
83	Novel method of monitoring electroencephalography at the site of microdialysis during chemically evoked seizures in a freely moving animal. Journal of Neuroscience Methods, 2000, 99, 85-90.	1.3	14
84	Binding and agonist/antagonist actions of M35, galanin(1-13)-bradykinin(2-9) amide chimeric peptide, in Rin m 5F insulinoma cells. Regulatory Peptides, 1995, 59, 341-348.	1.9	41
85	Experience and Latency to Achieve Stereopsis: A Replication. Perceptual and Motor Skills, 1977, 45, 261-262.	0.6	10