Xiao-Mei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2826899/publications.pdf Version: 2024-02-01

XIAO-MELZHANC

#	Article	IF	CITATIONS
1	Seagrass restoration using seed ball burial in northern China. Restoration Ecology, 2023, 31, .	1.4	3
2	Redox-triggered dearomative [5 + 1] annulation of indoles with <i>O</i> -alkyl <i>ortho</i> -oxybenzaldehydes for the synthesis of spirochromanes. Organic Chemistry Frontiers, 2022, 9, 1668-1674.	2.3	20
3	Do adult eelgrass shoots rule seedling fate in a large seagrass meadow in a eutrophic bay in northern China?. Marine Pollution Bulletin, 2022, 178, 113499.	2.3	4
4	Enantioselective intramolecular Pictet–Spengler type annulation of indole-linked 3-methyleneisoindolin-1-ones. New Journal of Chemistry, 2022, 46, 9582-9586.	1.4	6
5	Sc(OTf) ₃ â€Catalyzed Dearomative [3+2] Annulation of 5â€Aminoisoxazoles with Quinone Imine Ketals or Quinone Monoacetals. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
6	Programmed responses of different life-stages of the seagrass Ruppia sinensis to copper and cadmium exposure. Journal of Hazardous Materials, 2021, 403, 123875.	6.5	13
7	An enantioselective aza-Friedel–Crafts reaction of 5-aminoisoxazoles with isatin-derived <i>N</i> -Boc ketimines. Organic and Biomolecular Chemistry, 2021, 19, 3820-3824.	1.5	13
8	Tandem Conjugate Addition/Aromatization/Acyl Transfer Reaction between 3â€Arylâ€2â€nitropropanoates and Quinone Monoimines. ChemistrySelect, 2021, 6, 3267-3270.	0.7	0
9	New insights into physiological effects of anoxia under darkness on the iconic seagrass Zostera marina based on a combined analysis of transcriptomics and metabolomics. Science of the Total Environment, 2021, 768, 144717.	3.9	11
10	Enantioselective Dearomative [3+2] Annulation of 3â€Hydroxymaleimides with Azonaphthalenes. ChemistrySelect, 2021, 6, 4556-4561.	0.7	5
11	Diversity, distribution and conservation of seagrass in coastal waters of the Liaodong Peninsula, North Yellow Sea, northern China: Implications for seagrass conservation. Marine Pollution Bulletin, 2021, 167, 112261.	2.3	21
12	Tandem Reaction of Phenyl α yano―α â€arylacetates with Quinone Monoimines. ChemistrySelect, 2021, 6, 8923-8927.	0.7	0
13	Highly Diastereo―and Enantioselective Azaâ€Mannich Addition of Oxazolones to N―Boc Protected αâ€Amido Sulfones Catalyzed by Bifunctional Thioureaâ€modified Cinchona Alkaloid. ChemistrySelect, 2021, 6, 9442-9446.	0.7	Ο
14	The super typhoon Lekima (2019) resulted in massive losses in large seagrass (Zostera japonica) meadows, soil organic carbon and nitrogen pools in the intertidal Yellow River Delta, China. Science of the Total Environment, 2021, 793, 148398.	3.9	14
15	Enantioselective [3 + 2] annulation of 3-hydroxymaleimides with quinone monoimines. Organic Chemistry Frontiers, 2021, 8, 2268-2273.	2.3	12
16	Coumarin-3-formylpyrazoles as 3-carbon synthons in cyclocondensation for the synthesis of spiro-fused pentacyclic spirooxindoles. Organic and Biomolecular Chemistry, 2020, 18, 845-850.	1.5	11
17	Cyclocondensation of coumarin-3-thioformates with 3-hydroxyoxindoles and 3-aminooxindoles for the synthesis of spiro-fused pentaheterocyclic compounds. Organic Chemistry Frontiers, 2020, 7, 499-506.	2.3	14
18	A novel route to unsymmetrical disubstituted ureas and thioureas by HMPA catalyzed reductive alkylation with trichlorosilane. Organic Chemistry Frontiers, 2020, 7, 472-481.	2.3	7

#	Article	IF	CITATIONS
19	Sonar and in situ surveys of eelgrass distribution, reproductive effort, and sexual recruitment contribution in a eutrophic bay with intensive human activities: Implication for seagrass conservation. Marine Pollution Bulletin, 2020, 161, 111706.	2.3	12
20	A Construction of α-Alkenyl Lactones via Reduction Radical Cascade Reaction of Allyl Alcohols and Acetylenic Acids. Organic Letters, 2020, 22, 8337-8344.	2.4	11
21	Enantioselective dearomative [3+2] annulation of 5-amino-isoxazoles with quinone monoimines. Chemical Communications, 2020, 56, 13591-13594.	2.2	21
22	Plant morphology and seed germination responses of seagrass (Zostera japonica) to water depth and light availability in Ailian Bay, northern China. Marine Environmental Research, 2020, 162, 105082.	1.1	10
23	Enantioselective dearomative [3 + 2] annulation of 3-hydroxy chromanones with azonaphthalenes. Organic Chemistry Frontiers, 2020, 7, 3160-3165.	2.3	13
24	Experimental research of the energy bins for K-edge imaging using a photon counting detector: a phantom and mice study. Radiation Detection Technology and Methods, 2020, 4, 303-311.	0.4	5
25	Cobalt-Catalyzed Cycloamination: Synthesis and Photophysical Properties of Polycyclic N-Heterocycles. Organic Letters, 2020, 22, 5151-5156.	2.4	20
26	Base-mediated [4+2] annulation of electron-deficient nitrobenzoheterocycles and α,α-dicyanoalkenes in water: Facile access to structurally diverse functionalized dibenzoheterocyclic compounds. Tetrahedron, 2020, 76, 131115.	1.0	13
27	Synthesis of chiral [2,3]-fused indolines through enantioselective dearomatization inverse-electron-demand Diels–Alder reaction/oxidation of indoles with 2-(2-nitrovinyl)-1,4-benzoquinone. Chemical Communications, 2020, 56, 4200-4203.	2.2	21
28	[4 + 1] annulation reaction of cyclic pyridinium ylides with <i>in situ</i> generated azoalkenes for the construction of spirocyclic skeletons. Organic and Biomolecular Chemistry, 2020, 18, 1886-1891.	1.5	25
29	Dehydration in water: frustrated Lewis pairs directly catalyzed allylization of electron-rich arenes and allyl alcohols. RSC Advances, 2020, 10, 16942-16948.	1.7	12
30	Expedient Synthesis of Dihydroisoquinolines by Cascade Annulation of Nitrovinylbenzoquinone. ChemistrySelect, 2020, 5, 4478-4480.	0.7	1
31	Organocatalytic Asymmetric Dearomatization of 3-Nitroindoles and 3-Nitrobenzothiophenes via Thiol-Triggered Diastereo- and Enantioselective Double Michael Addition Reaction. Organic Letters, 2019, 21, 5452-5456.	2.4	47
32	Metal-free oxidative cross-dehydrogenative coupling of quinones with benzylic C(sp ³)–H bonds. RSC Advances, 2019, 9, 27588-27592.	1.7	13
33	Synthesis of Chiral αâ€Mercaptoâ€Î²â€acylamido Esters via Oneâ€Pot Asymmetric Hydrosilylationâ^'transacylatic of αâ€Acylthioâ€Î²â€Enamino Esters. Asian Journal of Organic Chemistry, 2019, 8, 456-461.	n 1.3	5
34	Chiral Bifunctional Amine-Squaramide-Catalyzed Highly Diastereo- and Enantioselective Michael/Aldol Cascade Reaction of 2-Mercaptobenzaldehyde and I±,I²-Unsaturated 7-Azaindoline Amides. Journal of Organic Chemistry, 2019, 84, 7984-7994.	1.7	19
35	Organocatalyzed Enantioselective Decarboxylative Mannich Reaction of βâ€Ketoacids with Pyrazolinone Ketimines for the Construction of Chiral βâ€Amino Ketoneâ€Pyrazolinone Derivatives. European Journal of Organic Chemistry, 2019, 2019, 3112-3116.	1.2	21
36	Phosphine-catalyzed dearomative (3 + 2) annulation of 2-nitrobenzofurans and nitrobenzothiophenes with allenoates. Organic and Biomolecular Chemistry, 2019, 17, 5294-5304.	1.5	26

#	Article	IF	CITATIONS
37	A Facile Direct Synthesis of 3â€Methyleneisoindolinâ€1â€ones by Annulation of Methyl 2â€Acylbenzoates with Amines. ChemistrySelect, 2019, 4, 4458-4461.	0.7	7
38	Organocatalyzed Asymmetric Dearomative Aza-Michael/Michael Addition Cascade of 2-Nitrobenzofurans and 2-Nitrobenzothiophenes with 2-Aminochalcones. Journal of Organic Chemistry, 2019, 84, 4381-4391.	1.7	52
39	Unprecedented Tandem Conjugate Addition/Câ€O Ester Migration ofαâ€Cyano Arylacetates with a Quinone Monoimine. ChemistrySelect, 2019, 4, 4156-4158.	0.7	3
40	Enantioselective conjugate hydrosilylation of α,β-unsaturated ketones. RSC Advances, 2019, 9, 11627-11633.	1.7	9
41	A AgOAc/quinine-derived aminophosphine complex as an efficient catalyst for diastereo- and enantioselective 1,3-dipolar cycloaddition of α,β-unsaturated 7-azaindoline amides and azomethine ylides. Organic Chemistry Frontiers, 2019, 6, 1879-1884.	2.3	11
42	Enantioselective Arylation of 3-Carboxamide Oxindoles with Quinone Monoimines and Synthesis of Chiral Spirooxindole-benzofuranones. Synlett, 2019, 30, 1067-1072.	1.0	2
43	Synthesis of Novel Pterocarpen Analogues via [3Â+Â2] Couplingâ€Elimination Cascade of α,αâ€Dicyanoolefins with Quinone Monoimines. Journal of Heterocyclic Chemistry, 2019, 56, 1672-1683.	1.4	8
44	B(C ₆ F ₅) ₃ -Catalyzed C–C Coupling of 1,4-Naphthoquinones with the C-3 Position of Indole Derivatives in Water. ACS Omega, 2019, 4, 21567-21577.	1.6	24
45	Organocatalyzed Dearomative Cycloaddition of 2-Nitrobenzofurans and Isatin-Derived Morita–Baylis–Hillman Carbonates: Highly Stereoselective Construction of Cyclopenta[<i>b</i>]benzofuran Scaffolds. Organic Letters, 2019, 21, 660-664.	2.4	76
46	Organocatalyzed Enantioselective Conjugated Addition of Sodium Bisulfite to β-Trifluoromethyl-α,β-unsaturated Ketones. Journal of Organic Chemistry, 2018, 83, 5771-5777.	1.7	19
47	Enantioselective αâ€Arylation of Cyclic βâ€Ketoamides with a Quinone Monoimine. ChemistrySelect, 2018, 3, 3975-3977.	0.7	3
48	Diastereo- and Enantioselective Dearomative [3 + 2] Cycloaddition Reaction of 2-Nitrobenzofurans with 3-Isothiocyanato Oxindoles. Organic Letters, 2018, 20, 909-912.	2.4	89
49	Zinc atalyzed Enantioselective Dearomative [3+2] Cycloaddition Reaction of 3â€Nitrobenzothiophenes and 3â€Nitrothieno[2,3â€ <i>b</i>]yridine with 3â€Isothiocyanato Oxindoles. Advanced Synthesis and Catalysis, 2018, 360, 1420-1425.	2.1	43
50	Enatioselective Synthesis of Tetrahydrocarbazoles <i>via</i> Chiral Phosphoric Acid Promoted Domino Friedel–Craftsâ€type Reaction of Indoleâ€3â€butanal with Indoles. Journal of Heterocyclic Chemistry, 2018, 55, 619-631.	1.4	3
51	Znâ€Catalyzed Diastereo―and Enantioselective Dearomative [3+2] Cycloaddition Reaction of 2â€Nitroindoles and 2â€Nitrobenzothiophenes. Advanced Synthesis and Catalysis, 2018, 360, 2482-2487.	2.1	44
52	Construction of Novel Kojic Acid Fused Furans by Domino Reactions of a Kojic Acid Derivative with (<i>Z</i>)â€Bromonitroalkenes. ChemistrySelect, 2018, 3, 4827-4830.	0.7	7
53	Facile synthesis of fused polycyclic compounds <i>via</i> intramolecular oxidative cyclization/aromatization of β-tetralone or β-tetralone oximes. Organic and Biomolecular Chemistry, 2018, 16, 9003-9010.	1.5	9
54	Organocatalytic Asymmetric [3 + 2] Cycloaddition of <i>N</i> -2,2,2-Trifluoroethylisatin Ketimines with β-Trifluoromethyl Electron-Deficient Alkenes: Access to Vicinally Bis(trifluoromethyl)-Substituted 3,2′-Pyrrolidinyl Spirooxindoles. Organic Letters, 2018, 20, 4453-4457.	2.4	90

#	Article	IF	CITATIONS
55	A Synthetic Strategy for 2-Alkylchromanones: Fe(III)-Catalyzed ÂReductive Cross-Coupling of Unactivated Alkenes with Chromones. Synlett, 2018, 29, 1851-1856.	1.0	8
56	One-pot diastereo- and enantioselective hydrosilylation–transacylation of α-acyloxy β-enamino esters. Organic Chemistry Frontiers, 2018, 5, 2787-2793.	2.3	10
57	Synthesis of polycyclic spirooxindoles <i>via</i> an asymmetric catalytic one-pot stepwise Aldol/chloroetherification/aromatization procedure. Organic and Biomolecular Chemistry, 2018, 16, 6647-6651.	1.5	12
58	Efficient Synthesis of 9Hâ€Pyrrolo[1,2â€ <i>α</i>]Indoles via Michael Addition–Condensation of 3â€Substituted Indoles with α,βâ€Unsaturated Ketimines. Journal of Heterocyclic Chemistry, 2017, 54, 965-978.	1.4	6
59	Construction of Novel Tetrahydroâ€ <i>β</i> â€carbolineâ€1â€thione Spirooxindoles by BrÃnsted Acid Mediated Formal [3+3] Cyclization of 3â€Indolylmethanols with 3â€Isothiocyanato Oxindoles. Journal of Heterocyclic Chemistry, 2017, 54, 1311-1317.	1.4	6
60	Catalystâ€free Synthesis of Spiro[indolineâ€3,1′â€pyrazolo[5,1â€a]isoquinolines] <i>via</i> Diastereoselective 1,3â€dipolar Cycloaddition under Mild Conditions. Journal of Heterocyclic Chemistry, 2017, 54, 2922-2928.	2 1.4	12
61	Dynamic Kinetic Resolution in Enantioselective Reductive Amination of <i>α</i> -Branched Aldehydes by Lewis Base Organocatalyzed Hydrosilylation. ChemistrySelect, 2017, 2, 4076-4078.	0.7	4
62	Multiple Hydrogen-Bonding Bifunctional Thiourea-Catalyzed Asymmetric Dearomative [4 + 2] Annulation of 3-Nitroindoles: Highly Enantioselective Access to Hydrocarbazole Skeletons. Organic Letters, 2017, 19, 4508-4511.	2.4	75
63	Organocatalytic asymmetric Henry reaction of 1 <i>H</i> -pyrrole-2,3-diones with bifunctional amine-thiourea catalysts bearing multiple hydrogen-bond donors. Beilstein Journal of Organic Chemistry, 2016, 12, 295-300.	1.3	17
64	Rhodiumâ€Catalyzed Tandem Annulation Reactions of 7â€Azaindoles with Electronâ€Deficient Olefins <i>via</i> Double CH Activation. Advanced Synthesis and Catalysis, 2016, 358, 1595-1601.	2.1	24
65	Diverse Reactivity in a Rhodium(III) atalyzed Vinylic <i>sp</i> ² C–H Bond Functionalization: Synthesis of Fused Polycyclic Heteroarenes or Conjugated Dienes. Advanced Synthesis and Catalysis, 2016, 358, 3724-3729.	2.1	11
66	Organocatalytic asymmetric [3+2] cycloaddition of N-2,2,2-trifluoroethylisatin ketimines with 3-alkenyl-5-arylfuran-2(3H)-ones. Chemical Communications, 2016, 52, 11708-11711.	2.2	77
67	One-pot construction of fused polycyclic heteroarenes involving 7-azaindoles and α,β-unsaturated ketones. Organic and Biomolecular Chemistry, 2016, 14, 7859-7863.	1.5	20
68	Michael Addition–Lactonization of Arylacetyl Phosphonate to β,γ-Unsaturated α-Keto Esters for the Synthesis of Chiral <i>syn</i> -3,4-Dihydropyranones and 5,6-Dihydropyranones. Organic Letters, 2016, 18, 5110-5113.	2.4	27
69	The organocatalytic asymmetric Neber reaction for the enantioselective synthesis of spirooxindole 2H-azirines. Organic and Biomolecular Chemistry, 2016, 14, 10946-10952.	1.5	24
70	Enantioselective synthesis of chiral α,β-unsaturated γ-substituted butyrolactams by organocatalyzed direct asymmetric vinylogous Michael addition of α,β-unsaturated γ-butyrolactam to 2-enoylpyridines. Organic and Biomolecular Chemistry, 2016, 14, 6568-6576.	1.5	29
71	Highly enantioselective [3+2] coupling of cyclic enamides with quinone monoimines promoted by a chiral phosphoric acid. Chemical Communications, 2016, 52, 8757-8760.	2.2	27
72	A Neber approach for the synthesis of spiro-fused 2H-azirine-pyrazolone. Organic and Biomolecular Chemistry, 2016, 14, 1946-1949.	1.5	10

#	Article	IF	CITATIONS
73	Recent Advances of αâ€Isothiocyanato Compounds in the Catalytic Asymmetric Reaction. Advanced Synthesis and Catalysis, 2015, 357, 3007-3031.	2.1	79
74	Organocatalytic Asymmetric Michael/Friedel–Crafts Cascade Reaction of 3-Pyrrolyl-oxindoles and α,β-Unsaturated Aldehydes for the Construction of Chiral Spiro[5,6-dihydropyrido[1,2-a]pyrrole-3,3′-oxindoles]. Journal of Organic Chemistry, 2015, 80, 5951-5957.	1.7	47
75	Rhodium(III)-Catalyzed Oxidative Annulation of 7-Azaindoles and Alkynes via Double C–H Activation. Organic Letters, 2015, 17, 3018-3021.	2.4	104
76	Preparation of 3-Sulfonylated 3,3-Disubstituted Oxindoles by the Addition of Sulfinate Salts to 3-Halooxindoles. Journal of Organic Chemistry, 2015, 80, 634-640.	1.7	33
77	Enantioselective Synthesis of 3,3-Disubstituted Oxindoles Bearing Two Different Heteroatoms at the C3 Position by Organocatalyzed Sulfenylation and Selenenylation of 3-Pyrrolyl-oxindoles. Journal of Organic Chemistry, 2015, 80, 8470-8477.	1.7	55
78	Enantioselective Recognition of Chiral Carboxylic Acids by a β-Amino Acid and 1,10-Phenanthroline Based Chiral Fluorescent Sensor. Sensors, 2015, 15, 10723-10733.	2.1	10
79	An Efficient Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones and Thiones Catalyzed by a Novel BrÃ,nsted Acidic Ionic Liquid under Solvent-Free Conditions. Molecules, 2015, 20, 3811-3820.	1.7	50
80	Asymmetric Michael/Cyclization Cascade Reaction of 3-Isothiocyanato Oxindoles and 3-Nitroindoles with Amino-Thiocarbamate Catalysts: Enantioselective Synthesis of Polycyclic Spirooxindoles. Organic Letters, 2015, 17, 2238-2241.	2.4	134
81	Synthesis and secondary conformations of homochiral β-oligopeptides containing aryl side chains. Chemical Research in Chinese Universities, 2015, 31, 381-387.	1.3	3
82	Zn-Catalyzed Diastereo- and Enantioselective Cascade Reaction of 3-Isothiocyanato Oxindoles and 3-Nitroindoles: Stereocontrolled Syntheses of Polycyclic Spirooxindoles. Organic Letters, 2015, 17, 5020-5023.	2.4	111
83	Lewis Acid Catalyzed [3+2] Coupling of Quinone Monoacetals or Quinone Imine Ketals with Vinylcarbamates. Synlett, 2015, 26, 1720-1724.	1.0	9
84	Diastereo- and enantioselective direct vinylogous Michael addition of Î ³ -substituted butenolides to 2-enoylpyridines catalyzed by chiral bifunctional amine-squaramides. Chemical Communications, 2015, 51, 15835-15838.	2.2	60
85	Organocatalytic Asymmetric Michael/Cyclization Cascade Reactions of 3-Hydroxyoxindoles/3-Aminooxindoles with α,β-Unsaturated Acyl Phosphonates for the Construction of Spirocyclic Oxindole-γ-lactones/lactams. Journal of Organic Chemistry, 2015, 80, 12668-12675.	1.7	80
86	3-Pyrrolyl-oxindoles as efficient nucleophiles for organocatalytic asymmetric synthesis of structurally diverse 3,3′-disubstituted oxindole derivatives. Chemical Communications, 2015, 51, 757-760.	2.2	53
87	Graphene oxide caged in cellulose microbeads for removal of malachite green dye from aqueous solution. Journal of Colloid and Interface Science, 2015, 437, 277-282.	5.0	115
88	Lewis Base Catalyzed Asymmetric Hydrosilylation of α-Substituted β-Enamino Esters: Facile Access to Enantioenriched β2-Amino Esters via Dynamic Kinetic Resolution. Synlett, 2014, 25, 1879-1882.	1.0	9
89	Highly Enantioselective [3+2] Coupling of Indoles with Quinone Monoimines Promoted by a Chiral Phosphoric Acid. Angewandte Chemie - International Edition, 2014, 53, 10471-10475.	7.2	138
90	Lewis base organocatalyzed enantioselective hydrosilylation of α-keto ketimines. Chemical Research in Chinese Universities, 2014, 30, 235-241.	1.3	7

#	Article	IF	CITATIONS
91	Organocatalytic enantioselective tandem Michael addition-oxidation of 3-substituted oxindoles with 1,4-benzoquinone. Tetrahedron, 2014, 70, 2020-2026.	1.0	14
92	Enantioselective Lewisâ€Baseâ€Catalyzed Asymmetric Hydrosilylation of Substituted Benzophenone <i>N</i> â€Aryl Imines: Efficient Synthesis of Chiral (Diarylmethyl)amines. Advanced Synthesis and Catalysis, 2014, 356, 3539-3544.	2.1	19
93	Lewis Acid Catalyzed [3+2] Coupling of Indoles with Quinone Monoacetals or Quinone Imine Ketal. European Journal of Organic Chemistry, 2014, 2014, 4467-4471.	1.2	34
94	Tandem Michael Addition–Ring Transformation Reactions of 3-Hydroxyoxindoles/3-Aminooxindoles with Olefinic Azlactones: Direct Access to Structurally Diverse Spirocyclic Oxindoles. Journal of Organic Chemistry, 2014, 79, 5305-5314.	1.7	55
95	Stereoselective Lewis Baseâ€Catalyzed Asymmetric Hydrosilylation of αâ€Acetamidoâ€Î²â€enamino Esters: Straightforward Approach for the Construction of α,βâ€Diamino Acid Derivatives. Advanced Synthesis and Catalysis, 2013, 355, 1931-1936.	2.1	22
96	Enantioselective Synthesis of Quaternary 3-Aminooxindoles via Organocatalytic Asymmetric Michael Addition of 3-Monosubstituted 3-Aminooxindoles to Nitroolefins. Journal of Organic Chemistry, 2013, 78, 8833-8839.	1.7	58
97	First way of enantioselective synthesis of moxifloxacin intermediate. Science China Chemistry, 2013, 56, 307-311.	4.2	12
98	Synthesis of a series of novel chiral Lewis base catalysts and their application in promoting asymmetric hydrosilylation of β-enamino esters. Organic and Biomolecular Chemistry, 2013, 11, 3089.	1.5	23
99	Addition of Purines to N-Boc Imines Generated in Situ in Water: Efficient Synthesis of Novel Acyclic Purine Azanucleosides. Synlett, 2012, 23, 1339-1342.	1.0	3
100	Lewis Base Organocatalyzed Enantioselective Hydrosilylation of 1,4-Benzoxazines. Synlett, 2012, 23, 1797-1800.	1.0	10
101	Organocatalytic Synthesis of Enantioenriched β-Arylsplitomicins. Synlett, 2012, 23, 796-800.	1.0	10
102	FeCl ₃ -Catalyzed Stereoselective Construction of Spirooxindole Tetrahydroquinolines via Tandem 1,5-Hydride Transfer/Ring Closure. Organic Letters, 2012, 14, 4054-4057.	2.4	142
103	Organocatalytic enantioselective Michael addition of a kojic acid derivative to nitro olefins. Organic and Biomolecular Chemistry, 2012, 10, 2950.	1.5	21
104	Highly Enantioselective Lewis Base Organocatalyzed Hydrosilylation of γâ€ i mino Esters. European Journal of Organic Chemistry, 2012, 2012, 251-255.	1.2	25
105	Enantioselective Synthesis of 4-Substituted 4,5-Dihydro-1 <i>H</i> -[1,5]benzodiazepin-2(3 <i>H</i>)-ones by the Lewis Base-Catalyzed Hydrosilylation. Journal of Organic Chemistry, 2011, 76, 9109-9115.	1.7	52
106	Diastereo- and Enantioselective Conjugate Addition of 3-Substituted Oxindoles to Nitroolefins Catalyzed by a Chiral Ni(OAc)2-Diamine Complex under Mild Conditions. Organic Letters, 2011, 13, 5064-5067.	2.4	74
107	Thiourea atalyzed Highly Diastereo―and Enantioselective Conjugate Additions of αâ€&ubstituted Cyanoacetates to Maleimides: Efficient Construction of Vicinal Quaternary―Tertiary Stereocenters. Advanced Synthesis and Catalysis, 2011, 353, 1720-1728.	2.1	38
108	Highly Diastereoselective and Enantioselective Synthesis of αâ€Hydroxy βâ€Amino Acid Derivatives: Lewis Base Catalyzed Hydrosilylation of αâ€Acetoxy βâ€Enamino Esters. Angewandte Chemie - International Edition, 2011, 50, 7304-7307.	7.2	102

#	ARTICLE	IF	CITATIONS
109	The First Highly Enantioselective Lewis Base Organocatalyzed Hydrosilylation of αâ€Imino Esters. European Journal of Organic Chemistry, 2010, 2010, 616-619.	1.2	56
110	Organocatalytic Enantioselective Friedel–Crafts Alkylation of Sesamol with Nitro Olefins. European Journal of Organic Chemistry, 2010, 2010, 3215-3218.	1.2	49
111	Organocatalytic Asymmetric Michael Addition of Pyrazolinâ€5â€ones to Nitroolefins with Bifunctional Thiourea: Stereocontrolled Construction of Contiguous Quaternary and Tertiary Stereocenters. Advanced Synthesis and Catalysis, 2010, 352, 827-832.	2.1	125
112	The First General, Highly Enantioselective Lewis Base Organo―catalyzed Hydrosilylation of Benzoxazinones and Quinoxalinones. Advanced Synthesis and Catalysis, 2010, 352, 2132-2136.	2.1	73
113	Organocatalytic Enantioselective Hydroxymethylation of Oxindoles with Paraformaldehyde as C1 Unit. Journal of Organic Chemistry, 2010, 75, 4872-4875.	1.7	107
114	Highly Diastereo- and Enantioselective Michael Additions of 3-Substituted Oxindoles to Maleimides Catalyzed by Chiral Bifunctional Thioureaâ^'Tertiary Amine. Organic Letters, 2010, 12, 2896-2899.	2.4	119
115	Catalyst-free aldol condensation of ketones and isatins under mild reaction conditions in DMF with molecular sieves 4 Ã as additive. Green Chemistry, 2009, 11, 1465.	4.6	46
116	Highly Enantioselective Synthesis of βâ€Amino Acid Derivatives by the Lewis Base Catalyzed Hydrosilylation of βâ€Enamino Esters. Chemistry - A European Journal, 2008, 14, 9864-9867.	1.7	91
117	Enantioselective hydrosilylation of ketimines with trichlorosilane promoted by chiral N-picolinoylaminoalcohols. Tetrahedron Letters, 2007, 48, 7934-7937.	0.7	86
118	Evaluation of Chiral Oxazolines for the Highly Enantioselective Diethylzinc Addition to N-(Diphenylphosphinoyl) Imines. Journal of Organic Chemistry, 2003, 68, 4322-4329.	1.7	52
119	REDUCTION OF AZIDES TO AMINES OR AMIDES WITH ZINC AND AMMONIUM CHLORIDE AS REDUCING AGENT. Synthetic Communications, 2002, 32, 3279-3284.	1.1	82
120	Studies on organophosphorus compounds 105: A facile synthesis of dialkyl 6-substituted-4-hydroxy-2-trifluoromethylquinoline-3-phosphonates. Heteroatom Chemistry, 2000, 11, 240-243.	0.4	3
121	A facile asymmetric synthesis of 1-amino-2,2,2-trifluoroethanephosphonic acid. Heteroatom Chemistry, 2000, 11, 536-540.	0.4	36
122	A facile asymmetric synthesis of 1-amino-2,2,2-trifluoroethanephosphonic acid. , 2000, 11, 536.		1
123	Enantioselective Synthesis of Axially Chiral Nâ€Arylâ€3â€methyleneisoindolinâ€1â€ones. Asian Journal of Organic Chemistry, 0, , .	1.3	2