Alexis Tigreros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2826304/publications.pdf Version: 2024-02-01

ALEVIS TICDEDOS

#	Article	IF	CITATIONS
1	Ecological and Economic Efforts in the Development of Molecular Sensors for the Optical Detection of Cyanide Ions. European Journal of Organic Chemistry, 2022, 2022, .	2.4	14
2	Expeditious ethanol quantification present in hydrocarbons and distilled spirits: Extending photophysical usages of the pyrazolo[1,5-a]pyrimidines. Dyes and Pigments, 2022, 202, 110299.	3.7	8
3	BF ₃ -Mediated Acetylation of Pyrazolo[1,5- <i>a</i>]pyrimidines and Other π-Excedent (<i>N</i> -Hetero)arenes. Journal of Organic Chemistry, 2022, 87, 9839-9850.	3.2	12
4	Photophysical and crystallographic study of three integrated pyrazolo[1,5-a]pyrimidine–triphenylamine systems. Dyes and Pigments, 2021, 184, 108730.	3.7	26
5	Fluorescent Pyrazole Derivatives: An Attractive Scaffold for Biological Imaging Applications. Current Chinese Science, 2021, 1, 197-206.	0.5	7
6	Pyrazolo[1,5- <i>a</i>]pyrimidinium Salts for Cyanide Sensing: A Performance and Sustainability Study of the Probes. ACS Sustainable Chemistry and Engineering, 2021, 9, 12058-12069.	6.7	19
7	Pyrazolo[1,5- <i>a</i>]pyrimidines-based fluorophores: a comprehensive theoretical-experimental study. RSC Advances, 2020, 10, 39542-39552.	3.6	28
8	Cyanide chemosensors based on 3-dicyanovinylpyrazolo[1,5-a]pyrimidines: Effects of peripheral 4-anisyl group substitution on the photophysical properties. Talanta, 2020, 215, 120905.	5.5	40
9	Recent progress in chemosensors based on pyrazole derivatives. RSC Advances, 2020, 10, 19693-19712.	3.6	93
10	Synthesis of Pyrrolo[2,3- <i>c</i>]isoquinolines via the Cycloaddition of Benzyne with Arylideneaminopyrroles: Photophysical and Crystallographic Study. ACS Omega, 2019, 4, 17326-17339.	3.5	10
11	Integrated pyrazolo[1,5-a]pyrimidine–hemicyanine system as a colorimetric and fluorometric chemosensor for cyanide recognition in water. Talanta, 2019, 196, 395-401.	5.5	49
12	3-Formylpyrazolo[1,5- <i>a</i>]pyrimidines as Key Intermediates for the Preparation of Functional Fluorophores. Journal of Organic Chemistry, 2018, 83, 10887-10897.	3.2	54
13	Fluorenâ€9â€ylideneâ€Based Dyes for Dye‧ensitized Solar Cells. European Journal of Organic Chemistry, 2015, 2015, 5537-5545.	2.4	5
14	Influence of acetylene-linked ï€-spacers on triphenylamine–fluorene dye sensitized solar cells performance. Solar Energy Materials and Solar Cells, 2014, 121, 61-68.	6.2	38
15	Geometric Influence on Intramolecular Photoinduced Electron Transfer in Platinum(II) Acetylideâ€Linked Donor–Acceptor Assemblies. Chemistry - A European Journal, 2014, 20, 11111-11119.	3.3	6
16	Effect of ï€-conjugated linkage on photophysical properties: Acetylene linker as the better connection group for highly solvatochromic probes. Dyes and Pigments, 2014, 111, 45-51.	3.7	31
17	Synthesis of 1â€Substituted 3â€Arylâ€5â€aryl(hetaryl)â€2â€pyrazolines and Study of Their Antitumor Activity. Archiv Der Pharmazie, 2012, 345, 275-286.	4.1	18
18	Free-base tetraarylporphyrin covalently linked to [60]fullerene through ethynylfluorene spacer. Journal of Porphyrins and Phthalocyanines, 2011, 15, 1231-1238.	0.8	4

ALEXIS TIGREROS

#	Article	IF	CITATIONS
19	2-(1,1-dicyanomethylene)rhodanine: A novel, efficient electron acceptor. Dyes and Pigments, 2011, 88, 385-390.	3.7	31
20	Synthesis and antifungal evaluation of novel dicyanoderivatives of rhodanine. Journal of Heterocyclic Chemistry, 2011, 48, 347-350.	2.6	11
21	Synthesis of novel pyrazolic analogues of chalcones and their 3-aryl-4-(3-aryl-4,5-dihydro-1H-pyrazol-5-yl)-1-phenyl-1H-pyrazole derivatives as potential antitumor agents. Bioorganic and Medicinal Chemistry, 2010, 18, 4965-4974.	3.0	179
22	An efficient twoâ€step synthesis of novel thiazolo[2,3â€ <i>b</i>]pyrazolo[3,4â€ <i>f</i>][1,3,5]triazepines. Journal of Heterocyclic Chemistry, 2009, 46, 756-761.	2.6	7