List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2826264/publications.pdf Version: 2024-02-01

	66343	88630
5,496	42	70
citations	h-index	g-index
132	132	2117
docs citations	times ranked	citing authors
	5,496 citations 132 docs citations	5,49642citationsh-index132132docs citationstimes ranked

YUYANG LI

#	Article	IF	CITATIONS
1	A comprehensive study on low-temperature oxidation chemistry of cyclohexane. I. Conformational analysis and theoretical study of first and second oxygen addition. Combustion and Flame, 2022, 235, 111658.	5.2	6
2	A comprehensive study on low-temperature oxidation chemistry of cyclohexane. II. Experimental and kinetic modeling investigation. Combustion and Flame, 2022, 235, 111550.	5.2	9
3	Experimental and kinetic modeling study of di-n-propyl ether and diisopropyl ether combustion: Pyrolysis and laminar flame propagation velocity. Combustion and Flame, 2022, 237, 111809.	5.2	8
4	Comparative investigation on tetramethylsilane and neopentane combustion: Jet-stirred reactor pyrolysis and kinetic modeling. Combustion and Flame, 2022, 237, 111900.	5.2	6
5	Investigation on n-pentylbenzene combustion at various pressures: Insight into effects of side-chain length on alkylbenzene combustion. Combustion and Flame, 2022, 238, 111976.	5.2	7
6	Conformation-dependent low-temperature oxidation chemistry of methylcyclohexane: First oxygen addition and chain-branching. Combustion and Flame, 2022, 243, 111963.	5.2	8
7	Theoretical Investigation on H-Abstraction Reactions of Silanes with H and CH ₃ Attacking: A Comparative Study with Alkane Counterparts. ACS Omega, 2022, 7, 5558-5569.	3.5	3
8	Numerical investigation on flow characteristics and emissions under varying swirler vane angle in a lean premixed combustor. Case Studies in Thermal Engineering, 2022, 31, 101800.	5.7	2
9	Enhancement of biogas combustion by co-firing dimethyl ether in a gas turbine model combustor. Fuel, 2022, 316, 123446.	6.4	7
10	Unraveling combustion chemistry of tetramethoxysilane in flow reactor pyrolysis and laminar flame propagation. Combustion and Flame, 2022, 242, 112169.	5.2	2
11	Unraveling Pressure Effects in Laminar Flame Propagation of Ammonia: A Comparative Study with Hydrogen, Methane, and Ammonia/Hydrogen. Energy & Fuels, 2022, 36, 8528-8537.	5.1	11
12	Exploring fuel isomeric effects on laminar flame propagation of butylbenzenes at various pressures. Proceedings of the Combustion Institute, 2021, 38, 2419-2429.	3.9	5
13	Insight into fuel isomeric effects on laminar flame propagation of pentanones. Proceedings of the Combustion Institute, 2021, 38, 2135-2142.	3.9	13
14	Probing the fuel-specific intermediates in the low-temperature oxidation of 1-heptene and modeling interpretation. Proceedings of the Combustion Institute, 2021, 38, 385-394.	3.9	8
15	Characterizing the fuel-specific combustion chemistry of acetic acid and propanoic acid: Laminar flame propagation and kinetic modeling studies. Proceedings of the Combustion Institute, 2021, 38, 449-457.	3.9	9
16	Unraveling synergistic effects on pyrolysis reactivity and indene formation in co-pyrolysis of toluene and acetylene. Proceedings of the Combustion Institute, 2021, 38, 1413-1421.	3.9	9
17	Exploring the low-temperature oxidation chemistry of 1-butene and i-butene triggered by dimethyl ether. Proceedings of the Combustion Institute, 2021, 38, 289-298.	3.9	9
18	Assessment of single-shot temperature measurements by thermally-assisted OH PLIF using excitation in the A2Σ+–X2Π(1-0) band. Proceedings of the Combustion Institute, 2021, 38, 1877-1883.	3.9	15

#	Article	IF	CITATIONS
19	Flow reactor pyrolysis of iso-butylbenzene and tert-butylbenzene at various pressures: Insight into fuel isomeric effects on pyrolysis chemistry of butylbenzenes. Proceedings of the Combustion Institute, 2021, 38, 1423-1432.	3.9	5
20	Exploring combustion chemistry of 1â€pentene: Flow reactor pyrolysis at various pressures and development of a detailed combustion model. International Journal of Chemical Kinetics, 2021, 53, 514-526.	1.6	5
21	Characterizing ammonia and nitric oxide interaction with outwardly propagating spherical flame method. Proceedings of the Combustion Institute, 2021, 38, 2477-2485.	3.9	27
22	Unraveling chemical structure of laminar premixed tetralin flames at low pressure with photoionization mass spectrometry and kinetic modeling. International Journal of Chemical Kinetics, 2021, 53, 154-163.	1.6	6
23	Liquid film thickness measurements on a plate based on brightness curve analysis with acute PLIF method. International Journal of Multiphase Flow, 2021, 136, 103549.	3.4	7
24	Insights into the Decomposition and Oxidation Chemistry of <i>p</i> -Xylene in Laminar Premixed Flames. Journal of Physical Chemistry A, 2021, 125, 3189-3197.	2.5	7
25	Probing pyrolysis chemistry of 1-heptene pyrolysis with insight into fuel molecular structure effects. Combustion and Flame, 2021, 227, 79-94.	5.2	7
26	Exploring combustion chemistry of ethyl valerate at various pressures: Pyrolysis, laminar burning velocity and kinetic modeling. Combustion and Flame, 2021, 227, 27-38.	5.2	8
27	Effects of devolatilization temperature on chemical structure and oxidation reactivity of soot sampled from a coflow diffusion ethylene flame. Fuel, 2021, 293, 120424.	6.4	2
28	Exploring pyrolysis and oxidation chemistry of o-xylene at various pressures with special concerns on PAH formation. Combustion and Flame, 2021, 228, 351-363.	5.2	21
29	Evolution of structure and oxidation reactivity from early-stage soot to mature soot sampled from a laminar coflow diffusion flame of ethylene. Combustion and Flame, 2021, 228, 202-209.	5.2	14
30	Mini Review of Current Combustion Research Progress of Biodiesel and Model Compounds for Gas Turbine Application. Energy & Fuels, 2021, 35, 13569-13584.	5.1	8
31	Revisit laminar premixed ethylene flames at elevated pressures: A mass spectrometric and laminar flame propagation study. Combustion and Flame, 2021, 230, 111422.	5.2	11
32	Exploration on Thermal Decomposition of Cyclopentanone: A Flow Reactor Pyrolysis and Kinetic Modeling Study. Energy & Fuels, 2021, 35, 14023-14034.	5.1	5
33	Enhancement of ammonia combustion with partial fuel cracking strategy: Laminar flame propagation and kinetic modeling investigation of NH3/H2/N2/air mixtures up to 10 atm. Combustion and Flame, 2021, 231, 111472.	5.2	120
34	Low-temperature oxidation chemistry of 2,4,4-trimethyl-1-pentene (diisobutylene) triggered by dimethyl ether (DME): A jet-stirred reactor oxidation and kinetic modeling investigation. Combustion and Flame, 2021, 234, 111629.	5.2	7
35	On the Flow Structure and Dynamics of Methane and Syngas Lean Flames in a Model Gas-Turbine Combustor. Energies, 2021, 14, 8267.	3.1	6
36	Experimental and kinetic modeling investigation on sec-butylbenzene combustion: Flow reactor pyrolysis and laminar flame propagation at various pressures. Combustion and Flame, 2020, 211, 18-31.	5.2	16

#	Article	IF	CITATIONS
37	Exploration on laminar flame propagation of ammonia and syngas mixtures up to 10Âatm. Combustion and Flame, 2020, 220, 368-377.	5.2	79
38	Experimental and kinetic modeling investigation on ethylcyclohexane low-temperature oxidation in a jet-stirred reactor. Combustion and Flame, 2020, 214, 211-223.	5.2	31
39	Elevated pressure low-temperature oxidation of linear five-heavy-atom fuels: diethyl ether, n-pentane, and their mixture. Zeitschrift Fur Physikalische Chemie, 2020, 234, 1269-1293.	2.8	11
40	Investigation on spherically expanding flame temperature of n-butane/air mixtures with tunable diode laser absorption spectroscopy. Proceedings of the Combustion Institute, 2019, 37, 1589-1596.	3.9	6
41	Low-temperature gas-phase oxidation of diethyl ether: Fuel reactivity and fuel-specific products. Proceedings of the Combustion Institute, 2019, 37, 511-519.	3.9	52
42	New insights into propanal oxidation at low temperatures: An experimental and kinetic modeling study. Proceedings of the Combustion Institute, 2019, 37, 565-573.	3.9	21
43	Investigation on 1-heptene/air laminar flame propagation under elevated pressures. Chinese Journal of Chemical Physics, 2019, 32, 99-106.	1.3	4
44	Experimental and kinetic modeling investigation on laminar flame propagation of CH4/CO mixtures at various pressures: Insight into the transition from CH4-related chemistry to CO-related chemistry. Combustion and Flame, 2019, 209, 481-492.	5.2	20
45	Probing the low-temperature chemistry of di-n-butyl ether: Detection of previously unobserved intermediates. Combustion and Flame, 2019, 210, 9-24.	5.2	26
46	Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions. Combustion and Flame, 2019, 210, 236-246.	5.2	275
47	Experimental and kinetic modeling study on flow reactor pyrolysis of iso-pentanol: Understanding of iso-pentanol pyrolysis chemistry and fuel isomeric effects of pentanol. Fuel, 2019, 257, 116039.	6.4	15
48	Experimental and kinetic modeling study of n-propanol and i-propanol combustion: Flow reactor pyrolysis and laminar flame propagation. Combustion and Flame, 2019, 207, 171-185.	5.2	47
49	Low-temperature chemistry triggered by probe cooling in a low-pressure premixed flame. Combustion and Flame, 2019, 204, 260-267.	5.2	18
50	Exploration of the pyrolysis chemistry of 1,1-diethoxybutane: A flow reactor and kinetic modeling study. Fuel, 2019, 236, 437-444.	6.4	1
51	Experimental and kinetic modeling investigation on anisole pyrolysis: Implications on phenoxy and cyclopentadienyl chemistry. Combustion and Flame, 2019, 201, 187-199.	5.2	34
52	Pyrolysis of butane-2,3‑dione from low to high pressures: Implications for methyl-related growth chemistry. Combustion and Flame, 2019, 200, 69-81.	5.2	13
53	Acetaldehyde oxidation at low and intermediate temperatures: An experimental and kinetic modeling investigation. Combustion and Flame, 2018, 191, 431-441.	5.2	43
54	Investigation on laminar flame propagation of n-butanol/air and n-butanol/O2/He mixtures at pressures up to 20Âatm. Combustion and Flame, 2018, 191, 368-380.	5.2	30

#	Article	IF	CITATIONS
55	Experimental and theoretical investigation on cellular instability of methanol/air flames. Fuel, 2018, 225, 95-103.	6.4	42
56	Experimental and kinetic modeling investigation on pyrolysis and combustion of n-butane and i-butane at various pressures. Combustion and Flame, 2018, 191, 126-141.	5.2	50
57	Experimental and kinetic modeling investigation of rich premixed toluene flames doped with <i>n</i> -butanol. Physical Chemistry Chemical Physics, 2018, 20, 10628-10636.	2.8	9
58	Exploring the low-temperature oxidation chemistry of cyclohexane in a jet-stirred reactor: An experimental and kinetic modeling study. Chinese Journal of Chemical Physics, 2018, 31, 537-546.	1.3	10
59	Predictive kinetics on the formation and decomposition of ethylbenzene. Proceedings of the Combustion Institute, 2017, 36, 533-542.	3.9	15
60	Experimental and kinetic modeling study of premixed n-butylbenzene flames. Proceedings of the Combustion Institute, 2017, 36, 815-823.	3.9	20
61	A thermal decomposition study of pine wood under ambient pressure using thermogravimetry combined with synchrotron vacuum ultraviolet photoionization mass spectrometry. Proceedings of the Combustion Institute, 2017, 36, 2217-2224.	3.9	26
62	Investigation on the oxidation chemistry of methanol in laminar premixed flames. Combustion and Flame, 2017, 180, 20-31.	5.2	45
63	A comprehensive experimental and kinetic modeling study of n-propylbenzene combustion. Combustion and Flame, 2017, 186, 178-192.	5.2	40
64	Investigation on laminar burning velocities of benzene, toluene and ethylbenzene up to 20â€⁻atm. Combustion and Flame, 2017, 184, 312-323.	5.2	58
65	Challenges and perspectives of combustion chemistry research. Science China Chemistry, 2017, 60, 1391-1401.	8.2	15
66	Influence of the biofuel isomers diethyl ether and n-butanol on flame structure and pollutant formation in premixed n-butane flames. Combustion and Flame, 2017, 175, 47-59.	5.2	36
67	Speciation and the laminar burning velocities of poly(oxymethylene) dimethyl ether 3 (POMDME3) flames: An experimental and modeling study. Proceedings of the Combustion Institute, 2017, 36, 1269-1278.	3.9	112
68	Experimental and kinetic modeling study of laminar premixed decalin flames. Proceedings of the Combustion Institute, 2017, 36, 1193-1202.	3.9	14
69	Experimental and kinetic modeling study of laminar coflow diffusion methane flames doped with iso-butanol. Proceedings of the Combustion Institute, 2017, 36, 1259-1267.	3.9	13
70	Pyrolysis of <i>n</i> -Butylbenzene at Various Pressures: Influence of Long Side-Chain Structure on Alkylbenzene Pyrolysis. Energy & Fuels, 2017, 31, 14270-14279.	5.1	47
71	The vacuum ultraviolet beamline/endstations atÂNSRL dedicated to combustion research. Journal of Synchrotron Radiation, 2016, 23, 1035-1045.	2.4	149
72	A comprehensive experimental and kinetic modeling study of tert-butanol combustion. Combustion and Flame, 2016, 169, 154-170.	5.2	22

#	Article	IF	CITATIONS
73	Experimental and kinetic modeling study of 1-hexene combustion at various pressures. Combustion and Flame, 2016, 173, 151-160.	5.2	32
74	Influence of Thermal Treatment of HUSY on Catalytic Pyrolysis of Polypropylene: An Online Photoionization Mass Spectrometric Study. Energy & Fuels, 2016, 30, 5122-5129.	5.1	10
75	Experimental and kinetic modeling investigation on decalin pyrolysis at low to atmospheric pressures. Combustion and Flame, 2016, 167, 228-237.	5.2	18
76	A comprehensive experimental and kinetic modeling study of ethylbenzene combustion. Combustion and Flame, 2016, 166, 255-265.	5.2	65
77	Combustion Chemistry Study with Synchrotron VUV Photoionization Mass Spectrometry. , 2016, , .		0
78	Pyrolysis of 2-methyl-1-butanol at low and atmospheric pressures: Mass spectrometry and modeling studies. Proceedings of the Combustion Institute, 2015, 35, 409-417.	3.9	14
79	Experimental and kinetic modeling study of premixed o-xylene flames. Proceedings of the Combustion Institute, 2015, 35, 1745-1752.	3.9	45
80	Experimental and kinetic modeling investigation on laminar premixed benzene flames with various equivalence ratios. Proceedings of the Combustion Institute, 2015, 35, 855-862.	3.9	52
81	Investigation on primary decomposition of ethylcyclohexane at atmospheric pressure. Proceedings of the Combustion Institute, 2015, 35, 367-375.	3.9	47
82	Kinetic modeling study of benzene and PAH formation in laminar methane flames. Combustion and Flame, 2015, 162, 1692-1711.	5.2	67
83	Experimental and kinetic modeling study of laminar coflow diffusion methane flames doped with 2-butanol. Proceedings of the Combustion Institute, 2015, 35, 863-871.	3.9	20
84	Experimental and kinetic modeling study of n-pentanol pyrolysis and combustion. Combustion and Flame, 2015, 162, 3277-3287.	5.2	35
85	Kinetics of ethylcyclohexane pyrolysis and oxidation: An experimental and detailed kinetic modeling study. Combustion and Flame, 2015, 162, 2873-2892.	5.2	70
86	Experimental and kinetic modeling study of styrene combustion. Combustion and Flame, 2015, 162, 1868-1883.	5.2	47
87	Promotion Effect of H ₂ on Ethanol Oxidation and NO _{<i>x</i>} Reduction with Ethanol over Ag/Al ₂ O ₃ Catalyst. Environmental Science & Technology, 2015, 49, 481-488.	10.0	31
88	Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. I. Flow reactor pyrolysis and jet stirred reactor oxidation. Combustion and Flame, 2015, 162, 3-21.	5.2	177
89	Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. II. A comprehensive kinetic modeling study. Combustion and Flame, 2015, 162, 22-40.	5.2	108
90	Laminar flame speeds, counterflow ignition, and kinetic modeling of the butene isomers. Proceedings of the Combustion Institute, 2015, 35, 309-316.	3.9	53

#	Article	IF	CITATIONS
91	Experimental and kinetic modeling study of i-butanol pyrolysis and combustion. Combustion and Flame, 2014, 161, 1955-1971.	5.2	28
92	Experimental and kinetic modeling study of 2,5-dimethylfuran pyrolysis at various pressures. Combustion and Flame, 2014, 161, 2496-2511.	5.2	103
93	Experimental and kinetic modeling study of PAH formation in methane coflow diffusion flames doped with n-butanol. Combustion and Flame, 2014, 161, 657-670.	5.2	40
94	Experimental and kinetic modeling study of pyrolysis and oxidation of n-decane. Combustion and Flame, 2014, 161, 1701-1715.	5.2	87
95	Experimental and kinetic modeling study of tetralin pyrolysis at low pressure. Proceedings of the Combustion Institute, 2013, 34, 1739-1748.	3.9	53
96	An experimental and modeling study of methyl propanoate pyrolysis at low pressure. Combustion and Flame, 2013, 160, 1958-1966.	5.2	50
97	Experimental and kinetic modeling study of 2-butanol pyrolysis and combustion. Combustion and Flame, 2013, 160, 1939-1957.	5.2	58
98	An experimental and kinetic modeling investigation on a rich premixed n-propylbenzene flame at low pressure. Proceedings of the Combustion Institute, 2013, 34, 1785-1793.	3.9	41
99	Kinetics of Decomposition and Isomerization of Methylcyclohexane: Starting Point for Studying Monoalkylated Cyclohexanes Combustion. Energy & Fuels, 2013, 27, 1679-1687.	5.1	44
100	Experimental and kinetic modeling study of tert-butanol combustion at low pressure. Energy, 2012, 43, 94-102.	8.8	29
101	An experimental and kinetic modeling study of three butene isomers pyrolysis at low pressure. Combustion and Flame, 2012, 159, 905-917.	5.2	141
102	Catalytic decomposition of methane on impregnated nickel based anodes with molecular-beam mass spectrometry and tunable synchrotron vacuum ultraviolet photoionization. International Journal of Hydrogen Energy, 2012, 37, 8354-8359.	7.1	5
103	An experimental and kinetic modeling study of premixed nitromethane flames at low pressure. Proceedings of the Combustion Institute, 2011, 33, 407-414.	3.9	55
104	Experimental and modeling investigation on premixed ethylbenzene flames at low pressure. Proceedings of the Combustion Institute, 2011, 33, 617-624.	3.9	56
105	Investigation on chemical structures of premixed toluene flames at low pressure. Proceedings of the Combustion Institute, 2011, 33, 593-600.	3.9	113
106	Investigation on fuel-rich premixed flames of monocyclic aromatic hydrocarbons: Part I. Intermediate identification and mass spectrometric analysis. Combustion and Flame, 2010, 157, 143-154.	5.2	83
107	Recent Applications of Synchrotron VUV Photoionization Mass Spectrometry: Insight into Combustion Chemistry. Accounts of Chemical Research, 2010, 43, 68-78.	15.6	209
108	Study of Low-Pressure Premixed Dimethyl Ether/Hydrogen/Oxygen/Argon Laminar Flames with Photoionization Mass Spectrometry. Energy & Fuels, 2010, 24, 1628-1635.	5.1	21

#	Article	IF	CITATIONS
109	An experimental study of the rich premixed ethylbenzene flame at low pressure. Proceedings of the Combustion Institute, 2009, 32, 647-655.	3.9	51
110	An experimental and kinetic modeling study of a premixed nitromethane flame at low pressure. Proceedings of the Combustion Institute, 2009, 32, 311-318.	3.9	70
111	Study of low-pressure premixed laminar n-heptane+propane/oxygen/nitrogen flames. Science Bulletin, 2009, 54, 1477-1486.	9.0	2
112	Study of combustion intermediates in fuelâ€rich methyl methacrylate flame with tunable synchrotron vacuum ultraviolet photoionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2009, 23, 85-92.	1.5	14
113	Investigation of the rich premixed laminar acetylene/oxygen/argon flame: Comprehensive flame structure and special concerns of polyynes. Proceedings of the Combustion Institute, 2009, 32, 1293-1300.	3.9	66
114	An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure. Combustion and Flame, 2009, 156, 1413-1426.	5.2	359
115	Effect of the pressure on the catalytic oxidation of volatile organic compounds over Ag/Al2O3 catalyst. Applied Catalysis B: Environmental, 2009, 89, 659-664.	20.2	40
116	Combustion Intermediates in Fuel-Rich 1,4-Dioxane Flame Studied by Tunable Synchrotron Vacuum Ultraviolet Photoionization. Journal of Physical Chemistry A, 2009, 113, 1800-1806.	2.5	7
117	Experimental Study of a Fuel-Rich Premixed Toluene Flame at Low Pressure. Energy & Fuels, 2009, 23, 1473-1485.	5.1	184
118	The Effects of MTBE/Ethanol Additives on Toxic Species Concentration in Gasoline Flame. Energy & Fuels, 2009, 23, 3543-3548.	5.1	32
119	An experimental study of premixed laminar methane/oxygen/argon flames doped with hydrogen at low pressure with synchrotron photoionization. Science Bulletin, 2008, 53, 1262-1269.	9.0	9
120	A comprehensive experimental study of low-pressure premixed C3-oxygenated hydrocarbon flames with tunable synchrotron photoionization. Combustion and Flame, 2008, 152, 336-359.	5.2	87
121	Identification of Combustion Intermediates in Low-Pressure Premixed Pyridine/Oxygen/Argon Flames. Journal of Physical Chemistry A, 2008, 112, 13549-13555.	2.5	31
122	Interstellar Enols Are Formed in Plasma Discharges of Alcohols. Astrophysical Journal, 2008, 676, 416-419.	4.5	32
123	Low temperature plasma diagnostics with tunable synchrotron vacuum ultraviolet photoionization mass spectrometry. Review of Scientific Instruments, 2008, 79, 103504.	1.3	13
124	Study on combustion of gasoline/MTBE in laminar flame with synchrotron radiation. Chemosphere, 2007, 67, 2065-2071.	8.2	11
125	Thermal Decomposition of Glycidyl Azide Polymer Studied by Synchrotron Photoionization Mass Spectrometry. Journal of Physical Chemistry B, 2007, 111, 2449-2455.	2.6	36
126	An Experimental Study of Rich Premixed Gasoline/O2/Ar Flame with Tunable Synchrotron Vacuum Ultraviolet Photoionization. Energy & Fuels, 2007, 21, 1931-1941.	5.1	25

#	Article	IF	CITATIONS
127	An experimental study of low-pressure premixed pyrrole/oxygen/argon flames with tunable synchrotron photoionization. Combustion and Flame, 2007, 151, 347-365.	5.2	52
128	The tunable VUV single-photon ionization mass spectrometry for the analysis of individual components in gasoline. International Journal of Mass Spectrometry, 2007, 263, 30-37.	1.5	36
129	An experimental study of the premixed benzene/oxygen/argon flame with tunable synchrotron photoionization. Proceedings of the Combustion Institute, 2007, 31, 555-563.	3.9	131
130	Identification of combustion intermediates in isomeric fuel-rich premixed butanol–oxygen flames at low pressure. Combustion and Flame, 2007, 148, 198-209.	5.2	189
131	Lean Premixed Gasoline/Oxygen Flame Studied with Tunable Synchrotron Vacuum UV Photoionization. Energy & Fuels, 2006, 20, 1505-1513.	5.1	38