List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2826244/publications.pdf Version: 2024-02-01

		430442	395343
117	1,286	18	33
papers	citations	h-index	g-index
			- 10
117	117	117	742
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Terahertz surface plasmons in optically pumped graphene structures. Journal of Physics Condensed Matter, 2011, 23, 145302.	0.7	168
2	Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures. Journal of Applied Physics, 2009, 106, .	1.1	125
3	The gain enhancement effect of surface plasmon polaritons on terahertz stimulated emission in optically pumped monolayer graphene. New Journal of Physics, 2013, 15, 075003.	1.2	94
4	Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 <i>μ</i> m. Applied Physics Letters, 2017, 111, .	1.5	58
5	Terahertz light-emitting graphene-channel transistor toward single-mode lasing. Nanophotonics, 2018, 7, 741-752.	2.9	57
6	HgCdTe-based heterostructures for terahertz photonics. APL Materials, 2017, 5, .	2.2	49
7	Study of lifetimes and photoconductivity relaxation in heterostructures with Hg x Cd1 â^' x Te/Cd y Hg1 â^' y Te quantum wells. Semiconductors, 2012, 46, 1362-1366.	0.2	34
8	Long wavelength stimulated emission up to 9.5 <i>μ</i> m from HgCdTe quantum well heterostructures. Applied Physics Letters, 2016, 108, .	1.5	34
9	Voltage-tunable terahertz and infrared photodetectors based on double-graphene-layer structures. Applied Physics Letters, 2014, 104, .	1.5	32
10	Spectra and kinetics of THz photoconductivity in narrow-gap Hg _{1–<i>x</i>} Cd <i>_x</i> Te (<i>x</i> < 0.2) epitaxial films. Semiconductor Science and Technology, 2013, 28, 125007.	1.0	29
11	Terahertz spectroscopy of quantum-well narrow-bandgap HgTe/CdTe-based heterostructures. JETP Letters, 2010, 92, 756-761.	0.4	27
12	Stimulated emission in the 28–35 μm wavelength range from Peltier cooled HgTe/CdHgTe quantum well heterostructures. Optics Express, 2018, 26, 12755.	1.7	26
13	Temperature-dependent terahertz spectroscopy of inverted-band three-layer InAs/GaSb/InAs quantum well. Physical Review B, 2018, 97, .	1.1	24
14	Electron transport and terahertz radiation detection in submicrometer-sized GaAs/AlGaAs field-effect transistors with two-dimensional electron gas. Physics of the Solid State, 2004, 46, 146-149.	0.2	23
15	Radiative recombination in narrow gap HgTe/CdHgTe quantum well heterostructures for laser applications. Journal of Physics Condensed Matter, 2018, 30, 495301.	0.7	22
16	Surface-plasmons lasing in double-graphene-layer structures. Journal of Applied Physics, 2014, 115, 044511.	1.1	21
17	Negative terahertz conductivity and amplification of surface plasmons in graphene–black phosphorus injection laser heterostructures. Physical Review B, 2019, 100, .	1.1	21
18	Temperature limitations for stimulated emission in 3–4 μm range due to threshold and non-threshold Auger recombination in HgTe/CdHgTe quantum wells. Applied Physics Letters, 2020, 117, 083103.	1.5	20

#	Article	IF	CITATIONS
19	Room-temperature intracavity difference-frequency generation in butt-joint diode lasers. Applied Physics Letters, 2008, 92, 021122.	1.5	18
20	Specific features of the spectra and relaxation kinetics of long-wavelength photoconductivity in narrow-gap HgCdTe epitaxial films and heterostructures with quantum wells. Semiconductors, 2013, 47, 1438-1441.	0.2	18
21	Coherent Emission in the Vicinity of 10 THz due to Auger-Suppressed Recombination of Dirac Fermions in HgCdTe Quantum Wells. ACS Photonics, 2021, 8, 3526-3535.	3.2	17
22	Nonlinear mode mixing in dual-wavelength semiconductor lasers with tunnel junctions. Applied Physics Letters, 2007, 90, 171106.	1.5	16
23	Long-wavelength injection lasers based on Pb1–x Sn x Se alloys and their use in solid-state spectroscopy. Semiconductors, 2015, 49, 1623-1626.	0.2	16
24	Graphene-based plasmonic metamaterial for terahertz laser transistors. Nanophotonics, 2022, 11, 1677-1696.	2.9	15
25	Features of impurity-photoconductivity relaxation in boron-doped silicon. Semiconductors, 2012, 46, 1387-1391.	0.2	14
26	Terahertz Injection Lasers Based on a PbSnSe Solid Solution with an Emission Wavelength up to 50 μm and Their Application in the Magnetospectroscopy of Semiconductors. Semiconductors, 2018, 52, 1590-1594.	0.2	14
27	Auger recombination in narrow gap HgCdTe/CdHgTe quantum well heterostructures. Journal of Applied Physics, 2021, 129, .	1.1	11
28	Kinetics of terahertz photoconductivity in p-Ge under impurity breakdown conditions. Semiconductors, 2010, 44, 1476-1479.	0.2	10
29	Features of Photoluminescence of Double Acceptors in HgTe/CdHgTe Heterostructures with Quantum Wells in a Terahertz Range. JETP Letters, 2019, 109, 657-662.	0.4	10
30	Tunable source of terahertz radiation based on the difference-frequency generation in a GaP crystal. JETP Letters, 2008, 88, 787-789.	0.4	9
31	Bipolar Persistent Photoconductivity in HgTe/CdHgTe (013) Double Quantum-Well Heterostructures. Semiconductors, 2018, 52, 1586-1589.	0.2	9
32	Plasmon recombination in narrowgap HgTe quantum wells. Journal of Physics Communications, 2020, 4, 115012.	0.5	9
33	Giant negative photoconductivity of PbSnTe:In films with wavelength cutoff near 30 μ4m. Semiconductors, 2016, 50, 1684-1690.	0.2	8
34	On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation. Semiconductors, 2017, 51, 1531-1536.	0.2	8
35	Threshold energies of Auger recombination in HgTe/CdHgTe quantum well heterostructures with 30–70 meV bandgap. Journal of Physics Condensed Matter, 2019, 31, 425301.	0.7	8
36	Waveguide effect of GaAsSb quantum wells in a laser structure based on GaAs. Semiconductors, 2013, 47, 1475-1477.	0.2	7

#	Article	IF	CITATIONS
37	Long-wavelength stimulated emission and carrier lifetimes in HgCdTe-based waveguide structures with quantum wells. Semiconductors, 2016, 50, 1651-1656.	0.2	7
38	Terahertz injection lasers based on PbSnSe alloy with an emission wavelength up to 46.5 $\hat{l}^1\!/4$ m. Semiconductors, 2016, 50, 1669-1672.	0.2	7
39	Chemical Shift and Exchange Interaction Energy of the 1s States of Magnesium Donors in Silicon. The Possibility of Stimulated Emission. Semiconductors, 2019, 53, 1234-1237.	0.2	7
40	Toward Peltier-cooled mid-infrared HgCdTe lasers: Analyzing the temperature quenching of stimulated emission at â^¼6 <i>l¼</i> m wavelength from HgCdTe quantum wells. Journal of Applied Physics 2021, 130, .	, 1.1	7
41	Impurity-induced photoconductivity of narrow-gap Cadmium–Mercury–Telluride structures. Semiconductors, 2015, 49, 1605-1610.	0.2	6
42	Mercury vacancies as divalent acceptors in Hg y Te1 – y /Cd x Hg1 – x Te structures with quantum wells. Semiconductors, 2016, 50, 1662-1668.	0.2	6
43	Investigation of HgCdTe waveguide structures with quantum wells for long-wavelength stimulated emission. Semiconductors, 2017, 51, 1557-1561.	0.2	6
44	Terahertz Photoluminescence of Double Acceptors in Bulky Epitaxial HgCdTe Layers and HgTe/CdHgTe Structures with Quantum Wells. Journal of Experimental and Theoretical Physics, 2018, 127, 1125-1129.	0.2	6
45	Effect of Features of the Band Spectrum on the Characteristics of Stimulated Emission in Narrow-Gap Heterostructures with HgCdTe Quantum Wells. Semiconductors, 2018, 52, 1375-1379.	0.2	6
46	Second-Harmonic Generation of Subterahertz Gyrotron Radiation by Frequency Doubling in InP:Fe and Its Application for Magnetospectroscopy of Semiconductor Structures. Semiconductors, 2019, 53, 1217-1221.	0.2	6
47	Inversion of the electron population in subbands of dimensional quantization with longitudinal transport in tunnel-coupled quantum wells. Semiconductors, 2002, 36, 685-690.	0.2	5
48	Experimental study of nonlinear mode mixing in dual-wavelength semiconductor lasers. Laser Physics, 2007, 17, 684-687.	0.6	5
49	Resonant features of the terahertz generation in semiconductor nanowires. Semiconductors, 2016, 50, 1561-1565.	0.2	5
50	On the stimulated emission of InGaAs/GaAs/AlGaAs laser structures grown by MOCVD on exact and inclined Ge/Si(001) substrates. Semiconductors, 2017, 51, 663-666.	0.2	5
51	Submonolayer InGaAs/GaAs Quantum Dots Grown by MOCVD. Semiconductors, 2019, 53, 1138-1142.	0.2	5
52	Probing States of a Double Acceptor in CdHgTe Heterostructures via Optical Gating. JETP Letters, 2020, 111, 575-581.	0.4	5
53	Mid-infrared stimulated emission in HgCdTe/CdHgTe quantum well heterostructures at room temperature. Optical Engineering, 2020, 60, .	0.5	5
54	A multifrequency interband two-cascade laser. Semiconductors, 2007, 41, 1209-1213.	0.2	4

#	Article	IF	CITATIONS
55	Difference-frequency generation in a butt-join diode laser. Semiconductors, 2009, 43, 208-211.	0.2	4
56	Picosecond photoluminescence dynamics in an InGaAs/GaAs quantum-well heterostructure. Semiconductors, 2012, 46, 917-920.	0.2	4
57	Stimulated emission from an InGaAs/GaAs/AlGaAs heterostructure grown on a Si substrate. JETP Letters, 2015, 100, 795-797.	0.4	4
58	Effect of the direct capture of holes with the emission of optical phonons on impurity-photoconductivity relaxation in p-Si:B. Semiconductors, 2015, 49, 187-190.	0.2	4
59	Technology of the production of laser diodes based on GaAs/InGaAs/AlGaAs structures grown on a Ge/Si substrate. Semiconductors, 2017, 51, 1477-1480.	0.2	4
60	Calculation of Multiply Charged States of Impurity-Defect Centers in Epitaxial Hg1 –xCdxTe Layers. Semiconductors, 2018, 52, 1369-1374.	0.2	4
61	Study of the Auger Recombination Energy Threshold in a Series of Waveguide Heterostructures with HgTe/Cd0.7Hg0.3Te QWs Near 14 μm. Semiconductors, 2019, 53, 1154-1157.	0.2	4
62	Terahertz Spectroscopy of Two-Dimensional Semimetal in Three-Layer InAs/GaSb/InAs Quantum Well. JETP Letters, 2019, 109, 96-101.	0.4	4
63	Investigation into Microwave Absorption in Semiconductors for Frequency-Multiplication Devices and Radiation-Output Control of Continuous and Pulsed Gyrotrons. Semiconductors, 2020, 54, 1069-1074.	0.2	4
64	Nonlinear mid-IR radiation in two-frequency semiconductor lasers with a corrugated waveguide. Technical Physics, 2004, 49, 1486-1490.	0.2	3
65	Oscillations at a difference frequency in the middle and far infrareds in GaP semiconductor waveguides. Technical Physics, 2006, 51, 1207-1209.	0.2	3
66	Picosecond kinetics of photoexcited carriers in gallium arsenide containing aluminum nanoclusters. Semiconductors, 2007, 41, 909-913.	0.2	3
67	Simultaneous TE1 and TE2 mode lasing yielding dual-wavelength oscillation in a semiconductor laser with a tunnel junction. Semiconductors, 2011, 45, 641-645.	0.2	3
68	Anomalous characteristics of lasers with a large number of quantum wells. Technical Physics, 2011, 56, 1049-1052.	0.2	3
69	Relaxation kinetics of impurity photoconductivity in p-Si:B with various levels of doping and degrees of compensation in high electric fields. Semiconductors, 2013, 47, 1461-1464.	0.2	3
70	Structural and optical properties of GaAs-based heterostructures with Ge and Ge/InGaAs quantum wells. Semiconductors, 2013, 47, 636-640.	0.2	3
71	Efficiency of vertical emission from a semiconductor laser waveguide with a diffraction grating. Semiconductors, 2014, 48, 89-94.	0.2	3
72	Observation of dynamics of impurity photoconductivity in n-GaAs caused by electron cooling. Semiconductors, 2015, 49, 113-117.	0.2	3

#	Article	IF	CITATIONS
73	On the Application of Strain-Compensating GaAsP Layers for the Growth of InGaAs/GaAs Quantum-Well Laser Heterostructures Emitting at Wavelengths above 1100 nm on Artificial Ge/Si Substrates. Semiconductors, 2018, 52, 1547-1550.	0.2	3
74	Lowering the Lasing Threshold by Doping in Mid-Infrared Lasers Based on HgCdTe with HgTe Quantum Wells. Semiconductors, 2018, 52, 1221-1224.	0.2	3
75	Photothermal Ionization Spectroscopy of Mercury Vacancies in HgCdTe Epitaxial Films. JETP Letters, 2021, 113, 402-408.	0.4	3
76	Terahertz plasmons in doped HgTe quantum well heterostructures: dispersion, losses, and amplification. Applied Optics, 2021, 60, 8991.	0.9	3
77	Population inversion between Γ subbands in quantum wells under the conditions of Γ-L intervalley transfer. Semiconductors, 2003, 37, 215-219.	0.2	2
78	Difference-frequency pulse generation in quantum well heterolasers. Laser Physics, 2007, 17, 688-694.	0.6	2
79	The waveguide effect of InGaAs quantum wells in a GaAs structure on Si substrate with Ge buffer layer. Technical Physics Letters, 2015, 41, 648-650.	0.2	2
80	Evolution of the Impurity Photoconductivity in CdHgTe Epitaxial Films with Temperature. Semiconductors, 2019, 53, 1266-1271.	0.2	2
81	Continuous-Wave Stimulated Emission in the 10–14-μm Range under Optical Excitation in HgCdTe/CdHgTe-QW Structures with Quasirelativistic Dispersion. Semiconductors, 2020, 54, 1371-1375.	0.2	2
82	Effect of antimony doping on the energy of optical transitions in n-Ge layers grown on Si (001) and Ge (001) substrates. Journal of Applied Physics, 2020, 127, 165701.	1.1	2
83	Calculation of the Resonance States of Coulomb Acceptors in Zero-Gap Semiconductors. Semiconductors, 2021, 55, 537.	0.2	2
84	Efficient generation of the first waveguide mode in the InGaAs/GaAs/InGaP heterolaser. Semiconductors, 2008, 42, 354-357.	0.2	1
85	Simultaneous generation of TE 0 and TE 1 modes with different wavelengths in a semiconducting laser diode. Technical Physics, 2009, 54, 1711-1713.	0.2	1
86	Role of auger recombination in the determination of the threshold current density of a green-wavelength laser. JETP Letters, 2013, 97, 245-248.	0.4	1
87	On a semiconductor laser with a p–n tunnel junction with radiation emission through the substrate. Semiconductors, 2015, 49, 1440-1442.	0.2	1
88	Optimization of InGaP/GaAs/InGaAs heterolasers with tunnel-coupled waveguides. Semiconductors, 2015, 49, 1571-1574.	0.2	1
89	Germanium laser with a hybrid surface plasmon mode. Semiconductors, 2016, 50, 1449-1452.	0.2	1
90	Spectra of Double Acceptors in Layers of Barriers and Quantum Wells of HgTe/CdHgTe Heterostructures. Semiconductors, 2019, 53, 1198-1202.	0.2	1

#	Article	IF	CITATIONS
91	Investigation of the Photosensitivity of Narrow-Gap and Gapless HgCdTe Solid Solutions in the Terahertz and Sub-Terahertz Range. Semiconductors, 2020, 54, 1096-1102.	0.2	1
92	Photoluminescence Spectra of InAs/GaInSb/InAs Quantum Wells in the Mid-Infrared Region. Semiconductors, 2020, 54, 1119-1122.	0.2	1
93	The possibility of difference frequency generation in the GaAs phonon reststrahlen band within dual-chip GaAs-based lasers. Journal of Applied Physics, 2020, 128, 053104.	1.1	1
94	Express Characterization of the HgCdTe/CdHgTe Quantum Well Waveguide Heterostructures with the Quasi-Relativistic Carrier Dispersion Law by Room-Temperature Photoluminescence Spectroscopy. Technical Physics Letters, 2021, 47, 154-157.	0.2	1
95	Possibility of intracavity terahertz difference frequency generation in a two-frequency GaAsP/AlGaAs/GaAs quantum well laser. Applied Optics, 2021, 60, 4404.	0.9	1
96	Plasmon absorption reducing in multiple quantum well structures. Applied Optics, 0, , .	0.9	1
97	Study of interband cascade lasers with tunneling transition. Bulletin of the Russian Academy of Sciences: Physics, 2007, 71, 96-99.	0.1	Ο
98	Generation of self-sustained pulsations of radiation in InGaAs/GaAs/InGaP quantum-well lasers. Journal of Applied Spectroscopy, 2007, 74, 589-593.	0.3	0
99	Terahertz difference frequency generation in GaAs-based butt-joint diode laser with germanium substrate. , 2008, , .		Ο
100	Intracavity difference-frequency generation in GaAS/InGaAs/InGaP butt-joint diode lasers. , 2008, , .		0
101	Graphene active plasmons toward the new types of terahertz lasers. , 2013, , .		Ο
102	An observation of direct-gap electroluminescence in GaAs structures with Ge quantum wells. Semiconductors, 2015, 49, 170-173.	0.2	0
103	Optical characteristics of laser diodes based on A3B5 compounds grown on germanium substrates. Technical Physics Letters, 2015, 41, 304-306.	0.2	Ο
104	Single-mode terahertz emission from current-injection graphene-channel transistor under population inversion. , 2016, , .		0
105	Method for narrowing the directional pattern of an InGaAs/GaAs/AlGaAs multiwell heterolaser. Semiconductors, 2016, 50, 1488-1492.	0.2	Ο
106	Stimulated emission from a metamorphic GaAsSb bulk layer on a GaAs substrate. Semiconductors, 2016, 50, 586-589.	0.2	0
107	Terahertz light emitting transistor based on current injection dualgate graphene-channel FET. , 2017, ,		0
108	Photodetectors with an InGaAs Active Region and InGaP Metamorphic Buffer Layer Grown on GaAs Substrates. Semiconductors, 2018, 52, 1564-1567.	0.2	0

#	Article	IF	CITATIONS
109	Stimulated Emission in the 1.3–1.5 μm Spectral Range from AlGaInAs Quantum Wells in Hybrid Light-Emitting III–V Heterostructures on Silicon Substrates. Semiconductors, 2018, 52, 1495-1499.	0.2	0
110	Stimulated Emission at 1.3-μm Wavelength in Metamorphic InGaAs/InGaAsP Structure with Quantum Wells Grown on Ge/Si(001) Substrate. Technical Physics Letters, 2018, 44, 735-738.	0.2	0
111	Analysis of Phonon Modes and Electron–Phonon Interaction in Quantum-Cascade Laser Heterostructures. Semiconductors, 2020, 54, 936-940.	0.2	0
112	10.1007/s11453-008-3021-6. , 2010, 42, 354.		0
113	Investigation of Stimulated Emission from HgTe/CdHgTe Quantum-Well Heterostructures in the 3–5 μm Atmospheric Transparency Window. Semiconductors, 2020, 54, 1365-1370.	0.2	0
114	Generation of Terahertz Radiation in InP:Fe Crystals Due to Second-Order Lattice Nonlinearity. Semiconductors, 2021, 55, 785-789.	0.2	0
115	Model of a Terahertz Quantum-Cascade Laser Based on Two-Dimensional Plasmons. Semiconductors, 2021, 55, 828-830.	0.2	0
116	Calculation of the Temperature Dependence of the Coulomb-Acceptor State Energy in a Narrow-Gap HgCdTe Solid Solution. Semiconductors, 2021, 55, 907-913.	0.2	0
117	Effect of Internal Optical Losses on the Generation of Mid-IR Stimulated Emission in Waveguide Heterostructures with HgCdTe/CdHgTe Quantum Wells. Semiconductors, 2021, 55, 899-902.	0.2	Ο