
Tiruvoor G Nagaraja

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2825766/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rumen Microbial Population Dynamics during Adaptation to a High-Grain Diet. Applied and Environmental Microbiology, 2010, 76, 7482-7490.	1.4	574
2	Ruminal Acidosis in Beef Cattle: The Current Microbiological and Nutritional Outlook. Journal of Dairy Science, 2007, 90, E17-E38.	1.4	561
3	Liver abscesses in feedlot cattle: a review Journal of Animal Science, 1998, 76, 287.	0.2	286
4	Ruminal microbial and fermentative changes associated with experimentally induced subacute acidosis in steers Journal of Animal Science, 1998, 76, 234.	0.2	189
5	Fusobacterium necrophorum infections: Virulence factors, pathogenic mechanism and control measures. Veterinary Research Communications, 1996, 20, 113-140.	0.6	175
6	Fusobacterium necrophorum infections in animals: Pathogenesis and pathogenic mechanisms. Anaerobe, 2005, 11, 239-246.	1.0	143
7	Liver Abscesses in Feedlot Cattle. Veterinary Clinics of North America - Food Animal Practice, 2007, 23, 351-369.	0.5	125
8	Acidosis in Feedlot Cattle. Veterinary Clinics of North America - Food Animal Practice, 2007, 23, 333-350.	0.5	124
9	A multiplex PCR procedure for the detection of six major virulence genes in Escherichia coli O157:H7. Journal of Microbiological Methods, 2010, 82, 85-89.	0.7	117
10	Effect of Lasalocid, Monensin or Thiopeptin on Lactic Acidosis in Cattle. Journal of Animal Science, 1982, 54, 649-658.	0.2	98
11	Effect of virginiamycin on ruminal fermentation in cattle during adaptation to a high concentrate diet and during an induced acidosis Journal of Animal Science, 1999, 77, 2259.	0.2	93
12	Liver abscesses in cattle: A review of incidence in Holsteins and of bacteriology and vaccine approaches to control in feedlot cattle12. Journal of Animal Science, 2016, 94, 1620-1632.	0.2	89
13	Applicability of a Multiplex PCR to Detect the Seven Major Shiga Toxin–Producing <i>Escherichia coli</i> Based on Genes That Code for Serogroup-Specific O-Antigens and Major Virulence Factors in Cattle Feces. Foodborne Pathogens and Disease, 2012, 9, 541-548.	0.8	88
14	Fusobacterium necrophorum: A ruminal bacterium that invades liver to cause abscesses in cattle. Anaerobe, 2009, 15, 36-43.	1.0	86
15	Applicability of a multiplex PCR to detect O26, O45, O103, O111, O121, O145, and O157 serogroups of Escherichia coli in cattle feces1. Veterinary Microbiology, 2012, 156, 381-388.	0.8	84
16	Relationship of Rumen Gram-Negative Bacteria and Free Endotoxin to Lactic Acidosis in Cattle. Journal of Animal Science, 1978, 47, 1329-1337.	0.2	81
17	Prevention of Lactic Acidosis in Cattle by Lasalocid or Monensin. Journal of Animal Science, 1981, 53, 206-216.	0.2	78
18	Leukotoxins of gram-negative bacteria. Veterinary Microbiology, 2002, 84, 337-356.	0.8	76

#	Article	IF	CITATIONS
19	Summer and Winter Prevalence of Shiga Toxin–Producing <i>Escherichia coli</i> (STEC) O26, O45, O103, O111, O121, O145, and O157 in Feces of Feedlot Cattle. Foodborne Pathogens and Disease, 2015, 12, 726-732.	0.8	75
20	Fusobacterium necrophorum Leukotoxin Induces Activation and Apoptosis of Bovine Leukocytes. Infection and Immunity, 2002, 70, 4609-4620.	1.0	74
21	Bacteriologic and histologic studies of hepatic abscesses in cattle. American Journal of Veterinary Research, 1988, 49, 58-62.	0.3	68
22	Dietary Interactions and Interventions AffectingEscherichia coliO157 Colonization and Shedding in Cattle. Foodborne Pathogens and Disease, 2009, 6, 785-792.	0.8	64
23	Selection of Fecal Enterococci Exhibiting <i>tcrB</i> -Mediated Copper Resistance in Pigs Fed Diets Supplemented with Copper. Applied and Environmental Microbiology, 2011, 77, 5597-5603.	1.4	63
24	Steam-rolled wheat diets for finishing cattle: effects of dietary roughage and feed intake on finishing steer performance and ruminal metabolism Journal of Animal Science, 1990, 68, 2130.	0.2	62
25	Effects of chlortetracycline and copper supplementation on antimicrobial resistance of fecal Escherichia coli from weaned pigs. Preventive Veterinary Medicine, 2014, 114, 231-246.	0.7	58
26	Efficacy ofEscherichia coliO157:H7 Siderophore Receptor/Porin Proteins–Based Vaccine in Feedlot Cattle Naturally SheddingE. coliO157. Foodborne Pathogens and Disease, 2009, 6, 893-899.	0.8	56
27	Occurrence of the Transferable Copper Resistance Gene <i>tcrB</i> among Fecal Enterococci of U.S. Feedlot Cattle Fed Copper-Supplemented Diets. Applied and Environmental Microbiology, 2013, 79, 4369-4375.	1.4	55
28	A Comparison of Culture- and PCR-Based Methods to Detect Six Major Non-O157 Serogroups of Shiga Toxin-Producing Escherichia coli in Cattle Feces. PLoS ONE, 2015, 10, e0135446.	1.1	53
29	Associations between the Presence and Magnitude of Escherichia coli O157 in Feces at Harvest and Contamination of Preintervention Beef Carcassesâ€. Journal of Food Protection, 2008, 71, 1761-1767.	0.8	50
30	Cloning, Sequencing, and Expression of the Leukotoxin Gene from Fusobacterium necrophorumâ€. Infection and Immunity, 2001, 69, 5447-5455.	1.0	49
31	Moderation of ruminal fermentation by ciliated protozoa in cattle fed a high-grain diet. Applied and Environmental Microbiology, 1992, 58, 2410-2414.	1.4	49
32	Prevalence of Shiga Toxin–Producing <i>Escherichia coli</i> and Associated Virulence Genes in Feces of Commercial Feedlot Cattle. Foodborne Pathogens and Disease, 2013, 10, 835-841.	0.8	47
33	Evidence of Endotoxins in the Rumen Bacteria of Cattle Fed Hay or Grain. Journal of Animal Science, 1978, 47, 226-234.	0.2	45
34	Ruminal ciliated protozoa in cattle fed finishing diets with or without supplemental fat Journal of Animal Science, 1990, 68, 2150.	0.2	45
35	Factors affecting the leukotoxin activity of Fusobacterium necrophorum. Veterinary Microbiology, 1992, 32, 15-28.	0.8	43
36	Effects of Feeding Elevated Concentrations of Copper and Zinc on the Antimicrobial Susceptibilities of Fecal Bacteria in Feedlot Cattle. Foodborne Pathogens and Disease, 2010, 7, 643-648.	0.8	42

Tiruvoor G Nagaraja

#	Article	IF	CITATIONS
37	Effect of ionophore antibiotics on experimentally induced lactic acidosis in cattle. American Journal of Veterinary Research, 1985, 46, 2444-52.	0.3	42
38	Virulence Gene Profiles and Clonal Relationships of Escherichia coli O26:H11 Isolates from Feedlot Cattle as Determined by Whole-Genome Sequencing. Applied and Environmental Microbiology, 2016, 82, 3900-3912.	1.4	41
39	Selective enumeration of Fusobacterium necrophorum from the bovine rumen. Applied and Environmental Microbiology, 1994, 60, 1387-1389.	1.4	41
40	Shiga Toxin Subtypes of Non-O157 Escherichia coli Serogroups Isolated from Cattle Feces. Frontiers in Cellular and Infection Microbiology, 2017, 7, 121.	1.8	38
41	Dynamics of ruminal ciliated protozoa in feedlot cattle. Applied and Environmental Microbiology, 1990, 56, 3174-3178.	1.4	38
42	Biochemical and biological characterization of ruminalFusobacterium necrophorum. FEMS Microbiology Letters, 1994, 120, 81-86.	0.7	37
43	Bacterial flora of liver abscesses in feedlot cattle fed tylosin or no tylosin Journal of Animal Science, 1999, 77, 973.	0.2	37
44	Animal- and Truckload-Level Associations between Escherichia coli O157:H7 in Feces and on Hides at Harvest and Contamination of Preevisceration Beef Carcasses. Journal of Food Protection, 2010, 73, 1030-1037.	0.8	37
45	Inclusion of Dried or Wet Distillers' Grains at Different Levels in Diets of Feedlot Cattle Affects Fecal Shedding of <i>Escherichia coli</i> O157:H7. Applied and Environmental Microbiology, 2010, 76, 7238-7242.	1.4	37
46	Nutrition and Disease. Veterinary Clinics of North America - Food Animal Practice, 1998, 14, 257-277.	0.5	36
47	Ribotyping to compare Fusobacterium necrophorum isolates from bovine liver abscesses, ruminal walls, and ruminal contents. Applied and Environmental Microbiology, 1997, 63, 4671-4678.	1.4	36
48	Biochemical and ribotypic comparison of Actinomyces pyogenes and A pyogenes-like organisms from liver abscesses, ruminal wall, and ruminal contents of cattle. American Journal of Veterinary Research, 1998, 59, 271-6.	0.3	35
49	A multiplex real-time PCR assay, based on inv A and pag C genes, for the detection and quantification of Salmonella enterica from cattle lymph nodes. Journal of Microbiological Methods, 2018, 148, 110-116.	0.7	34
50	Human Fusobacterium necrophorum strains have a leukotoxin gene and exhibit leukotoxic activity. Journal of Medical Microbiology, 2008, 57, 225-231.	0.7	32
51	Occurrence of <i>tcrB</i> , a Transferable Copper Resistance Gene, in Fecal Enterococci of Swine. Foodborne Pathogens and Disease, 2010, 7, 1089-1097.	0.8	32
52	Biological and biochemical characterization of Fusobacterium necrophorum leukotoxin. American Journal of Veterinary Research, 1994, 55, 515-21.	0.3	32
53	Effects of chlortetracycline and copper supplementation on the prevalence, distribution, and quantity of antimicrobial resistance genes in the fecal metagenome of weaned pigs. Preventive Veterinary Medicine, 2015, 119, 179-189.	0.7	30
54	A Four-Plex Real-Time PCR Assay, Based on <i>rfb</i> E, <i>stx</i> 1, <i>stx</i> 2, and <i>eae</i> Genes, for the Detection and Quantification of Shiga Toxin–Producing <i>Escherichia coli</i> O157 in Cattle Feces. Foodborne Pathogens and Disease, 2015, 12, 787-794.	0.8	29

#	Article	IF	CITATIONS
55	Effects of in-feed copper and tylosin supplementations on copper and antimicrobial resistance in faecal enterococci of feedlot cattle. Journal of Applied Microbiology, 2015, 118, 1287-1297.	1.4	29
56	Hepatic ultrasonography and blood changes in cattle with experimentally induced hepatic abscesses. American Journal of Veterinary Research, 1991, 52, 803-9.	0.3	29
57	Antimicrobial Susceptibility of Foodborne Pathogens in Organic or Natural Production Systems: An Overview. Foodborne Pathogens and Disease, 2008, 5, 721-730.	0.8	28
58	Detection of Escherichia coli O104 in the Feces of Feedlot Cattle by a Multiplex PCR Assay Designed To Target Major Genetic Traits of the Virulent Hybrid Strain Responsible for the 2011 German Outbreak. Applied and Environmental Microbiology, 2013, 79, 3522-3525.	1.4	28
59	Endotoxin Shock in Calves from Intravenous Injection of Rumen Bacterial Endotoxin. Journal of Animal Science, 1979, 49, 567-582.	0.2	27
60	Evaluation of Feeding Dried Distiller's Grains with Solubles and Dry-Rolled Corn on the Fecal Prevalence ofEscherichia coliO157:H7 andSalmonellaspp. in Cattle. Foodborne Pathogens and Disease, 2009, 6, 145-153.	0.8	27
61	<i>Escherichia coli</i> O26 in Feedlot Cattle: Fecal Prevalence, Isolation, Characterization, and Effects of an <i>E. coli</i> O157 Vaccine and a Direct-Fed Microbial. Foodborne Pathogens and Disease, 2014, 11, 186-193.	0.8	27
62	Effect of Fusobacterium necrophorum leukotoxoid vaccine on susceptibility to experimentally induced liver abscesses in cattle Journal of Animal Science, 1997, 75, 1160.	0.2	26
63	Targeted Amplicon Sequencing for Single-Nucleotide-Polymorphism Genotyping of Attaching and Effacing Escherichia coli O26:H11 Cattle Strains via a High-Throughput Library Preparation Technique. Applied and Environmental Microbiology, 2016, 82, 640-649.	1.4	26
64	Age Dependence of Antimicrobial Resistance Among Fecal Bacteria in Animals: A Scoping Review. Frontiers in Veterinary Science, 2020, 7, 622495.	0.9	25
65	Prevalence of <i>Escherichia coli</i> O157:H7 in Gut Contents of Beef Cattle at Slaughter. Foodborne Pathogens and Disease, 2010, 7, 249-255.	0.8	23
66	Effects of In-Feed Copper, Chlortetracycline, and Tylosin on the Prevalence of Transferable Copper Resistance Gene, <i>tcrB</i> , Among Fecal Enterococci of Weaned Piglets. Foodborne Pathogens and Disease, 2015, 12, 670-678.	0.8	23
67	Feedlot- and Pen-Level Prevalence of Enterohemorrhagic <i>Escherichia coli</i> in Feces of Commercial Feedlot Cattle in Two Major U.S. Cattle Feeding Areas. Foodborne Pathogens and Disease, 2017, 14, 309-317.	0.8	23
68	Immunogenicity and protective effects of truncated recombinant leukotoxin proteins of Fusobacterium necrophorum in mice. Veterinary Microbiology, 2003, 93, 335-347.	0.8	22
69	Escherichia coli O104 in Feedlot Cattle Feces: Prevalence, Isolation and Characterization. PLoS ONE, 2016, 11, e0152101.	1.1	22
70	Multiplex Quantitative PCR Assays for the Detection and Quantification of the Six Major Non-O157 Escherichia coli Serogroups in Cattle Feces. Journal of Food Protection, 2016, 79, 66-74.	0.8	22
71	Evaluation of Culture Methods To Identify Bovine Feces with High Concentrations of Escherichia coli O157. Applied and Environmental Microbiology, 2007, 73, 5253-5260.	1.4	21
72	Evaluation of a Multiplex Real-Time Polymerase Chain Reaction for the Quantification of <i>Escherichia coli</i> O157 in Cattle Feces. Foodborne Pathogens and Disease, 2012, 9, 79-85.	0.8	21

#	Article	IF	CITATIONS
73	Nasal Carriage of <i>mecA</i> -Positive Methicillin-Resistant <i>Staphylococcus aureus</i> in Pigs Exhibits Dose–Response to Zinc Supplementation. Foodborne Pathogens and Disease, 2015, 12, 159-163.	0.8	20
74	Distribution of the pco Gene Cluster and Associated Genetic Determinants among Swine Escherichia coli from a Controlled Feeding Trial. Genes, 2018, 9, 504.	1.0	20
75	Omasal ciliated protozoa in cattle, bison, and sheep. Applied and Environmental Microbiology, 1990, 56, 409-412.	1.4	20
76	The two major subspecies of Fusobacterium necrophorum have distinct leukotoxin operon promoter regions. Veterinary Microbiology, 2006, 112, 73-78.	0.8	19
77	Potential associations between fecal shedding of <i>Salmonella</i> in feedlot cattle treated for apparent respiratory disease and subsequent adverse health outcomes. Veterinary Research, 2009, 40, 02.	1.1	19
78	Endotoxic activity of cell-free rumen fluid from cattle fed hay or grain. Canadian Journal of Microbiology, 1978, 24, 1253-1261.	0.8	18
79	Leukotoxin operon and differential expressions of the leukotoxin gene in bovine Fusobacterium necrophorum subspecies. Anaerobe, 2008, 14, 13-18.	1.0	18
80	Genetic Diversity and Pathogenic Potential of Attaching and Effacing Escherichia coli O26:H11 Strains Recovered from Bovine Feces in the United States. Applied and Environmental Microbiology, 2015, 81, 3671-3678.	1.4	18
81	Multiplex PCR Assays for the Detection of One Hundred and Thirty Seven Serogroups of Shiga Toxin-Producing Escherichia coli Associated With Cattle. Frontiers in Cellular and Infection Microbiology, 2020, 10, 378.	1.8	18
82	Antimicrobial susceptibility of Fusobacterium necrophorum isolated from bovine hepatic abscesses. American Journal of Veterinary Research, 1998, 59, 44-7.	0.3	18
83	Serum neutralizing antibodies against Fusobacterium necrophorum leukotoxin in cattle with experimentally induced or naturally developed hepatic abscesses1. Journal of Animal Science, 1994, 72, 502-508.	0.2	17
84	Niche Marketing Production Practices for Beef Cattle in the United States and Prevalence of Foodborne Pathogens. Foodborne Pathogens and Disease, 2008, 5, 559-569.	0.8	17
85	Fecal Shedding of Non-O157 Serogroups of Shiga Toxin–Producing Escherichia coli in Feedlot Cattle Vaccinated with an Escherichia coli O157:H7 SRP Vaccine or Fed a Lactobacillus-Based Direct-Fed Microbialâ€. Journal of Food Protection, 2014, 77, 732-737.	0.8	17
86	Effects of Menthol Supplementation in Feedlot Cattle Diets on the Fecal Prevalence of Antimicrobial-Resistant Escherichia coli. PLoS ONE, 2016, 11, e0168983.	1.1	17
87	Antimicrobial resistance of Enterococcus faecium strains isolated from commercial probiotic products used in cattle and swine1,2. Journal of Animal Science, 2018, 96, 912-920.	0.2	17
88	Effects of tylosin on concentrations of Fusobacterium necrophorum and fermentation products in the rumen of cattle fed a high-concentrate diet. American Journal of Veterinary Research, 1999, 60, 1061-5.	0.3	17
89	First Report of Anaerobic Isolation of Salmonella enterica from Liver Abscesses of Feedlot Cattle. Journal of Clinical Microbiology, 2015, 53, 3100-3101.	1.8	16
90	Effects of limonene on ruminal Fusobacterium necrophorum concentrations, fermentation, and lysine degradation in cattle1. Journal of Animal Science, 2016, 94, 3420-3430.	0.2	16

#	Article	IF	CITATIONS
91	Genetic Analysis of Virulence Potential of Escherichia coli O104 Serotypes Isolated From Cattle Feces Using Whole Genome Sequencing. Frontiers in Microbiology, 2018, 9, 341.	1.5	16
92	Comparative genomics reveals differences in mobile virulence genes of Escherichia coli O103 pathotypes of bovine fecal origin. PLoS ONE, 2018, 13, e0191362.	1.1	15
93	Purification and quantification of Fusobacterium necrophorum leukotoxin by using monoclonal antibodies. Veterinary Microbiology, 1994, 42, 121-133.	0.8	14
94	Adhesion of Fusobacterium necrophorum to bovine endothelial cells is mediated by outer membrane proteins. Veterinary Microbiology, 2013, 162, 813-818.	0.8	14
95	Efficacy of a <i>Salmonella</i> Siderophore Receptor Protein Vaccine on Fecal Shedding and Lymph Node Carriage of <i>Salmonella</i> in Commercial Feedlot Cattle. Foodborne Pathogens and Disease, 2016, 13, 517-525.	0.8	14
96	Bacterial community analysis of purulent material from liver abscesses of crossbred cattle and Holstein steers fed finishing diets with or without tylosin. Journal of Animal Science, 2021, 99, .	0.2	14
97	Whole genome sequence analyses-based assessment of virulence potential and antimicrobial susceptibilities and resistance of <i>Enterococcus faecium</i> strains isolated from commercial swine and cattle probiotic products. Journal of Animal Science, 2022, 100, .	0.2	14
98	EFFECT OF LASALOCID, MONENSIN AND THIOPEPTIN ON LACTATE PRODUCTION FROM IN VITRO RUMEN FERMENTATION OF STARCH. Canadian Journal of Animal Science, 1986, 66, 129-139.	0.7	12
99	Pulsed-Field Gel Electrophoresis Patterns ofEscherichia coliO157 Isolates from Kansas Feedlots. Foodborne Pathogens and Disease, 2006, 3, 251-258.	0.8	12
100	Genetic Relatedness ofEscherichia coliO157 Isolates from Cattle Feces and Preintervention Beef Carcasses. Foodborne Pathogens and Disease, 2010, 7, 357-365.	0.8	12
101	Comparing Real-Time and Conventional PCR to Culture-Based Methods for Detecting and Quantifying Escherichia coli O157 in Cattle Feces. Journal of Food Protection, 2014, 77, 314-319.	0.8	12
102	Effects of chlortetracycline alone or in combination with direct fed microbials on nursery pig growth performance and antimicrobial resistance of fecal Escherichia coli1. Journal of Animal Science, 2018, 96, 5166-5178.	0.2	12
103	Serum neutralizing antibody response and protection against experimentally induced liver abscesses in steers vaccinated with Fusobacterium necrophorum. American Journal of Veterinary Research, 1996, 57, 483-8.	0.3	12
104	Pooling of Immunomagnetic Separation Beads Does Not Affect Detection Sensitivity of Six Major Serogroups of Shiga Toxin–Producing Escherichia coli in Cattle Feces. Journal of Food Protection, 2016, 79, 59-65.	0.8	11
105	A Randomized Trial to Assess the Effect of Fluoroquinolone Metaphylaxis on the Fecal Prevalence and Quinolone Susceptibilities of <i>Salmonella</i> and <i>Campylobacter</i> in Feedlot Cattle. Foodborne Pathogens and Disease, 2017, 14, 600-607.	0.8	11
106	Bacterial flora of liver abscesses in crossbred beef cattle and Holstein steers fed finishing diets with or without tylosin1,2. Journal of Animal Science, 2017, 95, 3425-3434.	0.2	11
107	The serum neutralizing antibody response in cattle to Fusobacterium necrophorum leukotoxoid and possible protection against experimentally induced hepatic abscesses. Veterinary Research Communications, 1996, 20, 493-504.	0.6	10
108	Prevalence and Quinolone Susceptibilities of <i>Salmonella</i> Isolated from the Feces of Preharvest Cattle Within Feedlots that Used a Fluoroquinolone to Treat Bovine Respiratory Disease. Foodborne Pathogens and Disease, 2016, 13, 303-308.	0.8	10

#	Article	IF	CITATIONS
109	Impact of added copper, alone or in combination with chlortetracycline, on growth performance and antimicrobial resistance of fecal enterococci of weaned piglets. Journal of Animal Science, 2020, 98, .	0.2	10
110	DNA microarray-based assessment of virulence potential of Shiga toxin gene-carrying Escherichia coli O104:H7 isolated from feedlot cattle feces. PLoS ONE, 2018, 13, e0196490.	1.1	9
111	Quantification of Bacteria Indicative of Fecal and Environmental Contamination from Hides to Carcasses. Foodborne Pathogens and Disease, 2019, 16, 844-855.	0.8	9
112	Whole-genome sequencing analysis of uncommon Shiga toxin-producing Escherichia coli from cattle: Virulence gene profiles, antimicrobial resistance predictions, and identification of novel O-serogroups. Food Microbiology, 2021, 99, 103821.	2.1	9
113	Shiga Toxin–Producing Escherichia coli in Feces of Finisher Pigs: Isolation, Identification, and Public Health Implications of Major and Minor Serogroups. Journal of Food Protection, 2021, 84, 169-180.	0.8	9
114	Chemical Characteristics of Rumen Bacterial Endotoxin. Journal of Animal Science, 1979, 48, 1250-1256.	0.2	8
115	Development of 11-Plex MOL-PCR Assay for the Rapid Screening of Samples for Shiga Toxin-Producing Escherichia coli. Frontiers in Cellular and Infection Microbiology, 2016, 6, 92.	1.8	8
116	Leukotoxic activity of Fusobacterium necrophorum of cattle origin. Anaerobe, 2019, 56, 51-56.	1.0	8
117	Identification, Shiga toxin subtypes and prevalence of minor serogroups of Shiga toxin-producing Escherichia coli in feedlot cattle feces. Scientific Reports, 2021, 11, 8601.	1.6	8
118	Live yeast and yeast extracts with and without pharmacological levels of zinc on nursery pig growth performance and antimicrobial susceptibilities of fecal <i>Escherichia coli</i> . Journal of Animal Science, 2021, 99, .	0.2	8
119	Influence of yeast-based pre- and probiotics in lactation and nursery diets on nursery pig performance and antimicrobial resistance of fecal <i>Escherichia coli</i> . Journal of Animal Science, 2022, 100, .	0.2	8
120	Detection and Quantification of Seven Major Serogroups of Shiga Toxin–Producing Escherichia coli on Hides of Cull Dairy, Cull Beef, and Fed Beef Cattle at Slaughterâ€. Journal of Food Protection, 2018, 81, 1236-1244.	0.8	7
121	Effects of Zinc and Menthol-Based Diets on Co-Selection of Antibiotic Resistance among E. coli and Enterococcus spp. in Beef Cattle. Animals, 2021, 11, 259.	1.0	7
122	Spiral Plating Method To Quantify the Six Major Non-O157 Escherichia coli Serogroups in Cattle Feces. Journal of Food Protection, 2017, 80, 848-856.	0.8	6
123	Antimicrobial Activity of Sorghum Phenolic Extract on Bovine Foodborne and Mastitis-Causing Pathogens. Antibiotics, 2021, 10, 594.	1.5	6
124	Effects of corn stalk inclusion and tylosin on performance, rumination, ruminal papillae morphology, and gut pathogens associated with liver abscesses from finishing beef steers. Livestock Science, 2021, 251, 104623.	0.6	6
125	Analysis of virulence potential of Escherichia coli O145 isolated from cattle feces and hide samples based on whole genome sequencing. PLoS ONE, 2019, 14, e0225057.	1.1	5
126	Associations Between Season, Processing Plant, and Hide Cleanliness Scores with Prevalence and Concentration of Major Shiga Toxin–Producing Escherichia coli on Beef Cattle Hides. Foodborne Pathogens and Disease, 2020, 17, 611-619.	0.8	5

#	Article	IF	CITATIONS
127	Leukotoxin production by Fusobacterium necrophorum strains in relation to severity of liver abscesses in cattle. Anaerobe, 2021, 69, 102344.	1.0	5
128	Bacterial flora of liver abscesses in crossbred beef cattle and Holstein steers fed finishing diets with or without tylosin. Journal of Animal Science, 2017, 95, 3425.	0.2	5
129	A longitudinal investigation of the effects of age, dietary fiber type and level, and injectable antimicrobials on the fecal microbiome and antimicrobial resistance of finisher pigs. Journal of Animal Science, 2022, 100, .	0.2	5
130	Genome Sequences of 64 Non-O157:H7 Shiga Toxin-Producing Escherichia coli Strains. Genome Announcements, 2015, 3, .	0.8	4
131	Effects of high condensed-tannin substrate, prior dietary tannin exposure, antimicrobial inclusion, and animal species on fermentation parameters following a 48 h in vitro incubation1. Journal of Animal Science, 2018, 96, 343-353.	0.2	4
132	Validation and Application of a Real-Time PCR Assay Based on the CRISPR Array for Serotype-Specific Detection and Quantification of Enterohemorrhagic Escherichia coli O157:H7 in Cattle Feces. Journal of Food Protection, 2018, 81, 1157-1164.	0.8	4
133	Bayesian estimation of sensitivity and specificity of culture- and PCR-based methods for the detection of six major non-O157 Escherichia coli serogroups in cattle feces. Preventive Veterinary Medicine, 2018, 161, 90-99.	0.7	4
134	Effects of Tylosin Administration Routes on the Prevalence of Antimicrobial Resistance Among Fecal Enterococci of Finishing Swine. Foodborne Pathogens and Disease, 2019, 16, 309-316.	0.8	4
135	DNA Microarray-Based Genomic Characterization of the Pathotypes of Escherichia coli O26, O45, O103, O111, and O145 Isolated from Feces of Feedlot Cattle. Journal of Food Protection, 2019, 82, 395-404.	0.8	4
136	Single-Cell-Based Digital PCR Detection and Association of Shiga Toxin-Producing Escherichia coli Serogroups and Major Virulence Genes. Journal of Clinical Microbiology, 2020, 58, .	1.8	4
137	Influence of Cane Molasses Inclusion to Dairy Cow Diets during the Transition Period on Rumen Epithelial Development. Animals, 2021, 11, 1230.	1.0	4
138	Faecal concentrations of ceftiofur metabolites in finisher pigs administered intramuscularly with ceftiofur. Veterinary Medicine and Science, 2021, 7, 1800-1806.	0.6	4
139	Competitive ExclusionEscherichia coliCultures onE. coliO157 Growth in Batch Culture Ruminal or Fecal Microbial Fermentation. Foodborne Pathogens and Disease, 2009, 6, 193-199.	0.8	3
140	Genome Sequences of Salmonella enterica subsp. enterica Serovar Lubbock Strains Isolated from Liver Abscesses of Feedlot Cattle. Genome Announcements, 2016, 4, .	0.8	3
141	Campylobacter Prevalence and Quinolone Susceptibility in Feces of Preharvest Feedlot Cattle Exposed to Enrofloxacin for the Treatment of Bovine Respiratory Disease. Foodborne Pathogens and Disease, 2018, 15, 377-385.	0.8	3
142	Polymerase Chain Reaction-Based Prevalence of Serogroups of <i>Escherichia coli</i> Known to Carry Shiga Toxin Genes in Feces of Finisher Pigs. Foodborne Pathogens and Disease, 2020, 17, 782-791.	0.8	3
143	Potential riskâ€factors affecting <i>Salmonella</i> sp. and <i>Escherichia coli</i> occurrence and distribution in Midwestern United States swine feed mills. Journal of Applied Microbiology, 2020, 129, 1744-1750.	1.4	3
144	29 Live Yeast and Yeast Extracts with and Without Pharmacological Levels of Zinc on Nursery Pig Growth Performance and Fecal Escherichia coli Antimicrobial Resistance. Journal of Animal Science, 2021, 99, 28-29.	0.2	3

#	Article	IF	CITATIONS
145	Ruminal and host adaptations to changes in frequency of protein supplementation1,2. Journal of Animal Science, 2004, 82, 895-903.	0.2	3
146	Rumen Microbial Changes in Ionophore Antiobiotic - Treated Steers with Experimenally Induced Acidosis. Asian-Australasian Journal of Animal Sciences, 1989, 2, 465-468.	2.4	3
147	Population structure of Salmonella enterica serotype Mbandaka reveals similar virulence potential irrespective of source and phylogenomic stratification. F1000Research, 2020, 9, 1142.	0.8	3
148	Impact of Persistent Bovine Viral Diarrhea Viral Infection on the Duration and Level of Shedding of <i>Escherichia coli </i> O157 in Calves. Foodborne Pathogens and Disease, 2008, 5, 245-251.	0.8	2
149	Effects of dietary energy level and intake of corn by-product-based diets on newly received growing cattle: antibody production, acute phase protein response, stress, and immunocompetency of healthy and morbid animals. Journal of Animal Science, 2018, 96, 1474-1483.	0.2	2
150	Comparison data of a two-target real-time PCR assay with and without an internal control in detecting Salmonella enterica from cattle lymph nodes. Data in Brief, 2018, 18, 1819-1824.	0.5	2
151	Whole genome shotgun sequencing revealed highly polymorphic genome regions and genes in Escherichia coli O157:H7 isolates collected from a single feedlot. PLoS ONE, 2018, 13, e0202775.	1.1	1
152	28 In-feed or In-water Antibiotic Administration Did Not Influence the Fecal Prevalence and Antimicrobial Susceptibility Profiles of Salmonella in Piglets. Journal of Animal Science, 2021, 99, 26-27.	0.2	1
153	Draft Genome Sequences of Salmonella enterica subsp. diarizonae Serotype IIIb_61:I,v:1,5,(7) Strains Isolated from Wheat Grains. Microbiology Resource Announcements, 2021, 10, .	0.3	1
154	388 Nutrition and the Ruminal Microbiome: Emerging Frontiers from an Old Friend. Journal of Animal Science, 2020, 98, 171-171.	0.2	1
155	Diseases of the Hepatobiliary System. , 2020, , 921-955.e6.		1
156	18 Impact of in-feed vs. in-water antibiotic administrations on the fecal prevalence and antimicrobial susceptibilities of Campylobacter and Salmonella in piglets. Journal of Animal Science, 2020, 98, 35-36.	0.2	1
157	Effects of yeast-based pre- and probiotics in lactation diets of sows on litter performance and antimicrobial resistance of fecal <i>Escherichia coli</i> of sows. Journal of Animal Science, 2022, , .	0.2	1
158	Association between Tulathromycin Treatment for Bovine Respiratory Disease and Antimicrobial Resistance Profiles among Gut Commensals and Foodborne Bacterial Pathogens Isolated from Feces of Beef Steers. Journal of Food Protection, 2022, 85, 1221-1231.	0.8	1
159	Draft Genome Sequences of Enteropathogenic Escherichia coli O103 Strains Isolated from Feces of Feedlot Cattle. Genome Announcements, 2017, 5, .	0.8	0
160	Draft Genome Sequences of Escherichia coli O104 Strains of Bovine and Human Origin. Genome Announcements, 2017, 5, .	0.8	0
161	Draft Genome Sequences of Enterohemorrhagic Escherichia coli O103:H2 Strains Isolated from Feces of Feedlot Cattle. Genome Announcements, 2017, 5, .	0.8	0
162	Frontiers in ruminant nutrition: An ASAS-CSAS-WSASAS 2020 Symposium overview. Journal of Animal Science, 2020, 98, .	0.2	0

#	Article	IF	CITATIONS
163	38 Evaluation of Sorghum Phenolic Compounds for Their Antimicrobial Activities Against Liver Abscess Causing Pathogens in Feedlot Cattle. Journal of Animal Science, 2021, 99, 32-32.	0.2	0
164	48 Evaluation of Antimicrobial Activities of Phytophenols Against Bacterial Pathogens That Cause Liver Abscesses in Feedlot Cattle. Journal of Animal Science, 2021, 99, 151-151.	0.2	0
165	Shiga Toxin–Producing Escherichia coli in Wheat Grains: Detection and Isolation by Polymerase Chain Reaction and Culture Methods. Foodborne Pathogens and Disease, 2021, 18, 752-760.	0.8	0
166	265 Evaluating the route of antibiotic administration and its effect on nursery pig growth performance. Journal of Animal Science, 2020, 98, 90-91.	0.2	0
167	Coliform and Escherichia coli contamination on external and internal surfaces of beef carcasses with and without tissue adhesion excision. Journal of Food Protection, 2022, , .	0.8	0
168	Title is missing!. , 2019, 14, e0225057.		0
169	Title is missing!. , 2019, 14, e0225057.		0
170	Title is missing!. , 2019, 14, e0225057.		0
171	Title is missing!. , 2019, 14, e0225057.		0