Etienne Meylan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2825444/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neutrophil phenotypes and functions in cancer: A consensus statement. Journal of Experimental Medicine, 2022, 219, .	4.2	119
2	Activin-A impairs CD8 T cell-mediated immunity and immune checkpoint therapy response in melanoma. , 2022, 10, e004533.		9
3	Anti-Ly6G binding and trafficking mediate positive neutrophil selection to unleash the anti-tumor efficacy of radiation therapy. Oncolmmunology, 2021, 10, 1876597.	2.1	14
4	GLUT1 Expression in Tumor-Associated Neutrophils Promotes Lung Cancer Growth and Resistance to Radiotherapy. Cancer Research, 2021, 81, 2345-2357.	0.4	65
5	Neutrophils in the era of immune checkpoint blockade. , 2021, 9, e002242.		52
6	Overcoming microenvironmental resistance to PD-1 blockade in genetically engineered lung cancer models. Science Translational Medicine, 2021, 13, .	5.8	44
7	Neutrophil metabolism in the cancer context. Seminars in Immunology, 2021, 57, 101583.	2.7	12
8	Tumor-Promoting Ly-6G+ SiglecFhigh Cells Are Mature and Long-Lived Neutrophils. Cell Reports, 2020, 32, 108164.	2.9	65
9	Durable and controlled depletion of neutrophils in mice. Nature Communications, 2020, 11, 2762.	5.8	138
10	CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors. Nature Immunology, 2020, 21, 298-308.	7.0	326
11	Combined deletion of Glut1 and Glut3 impairs lung adenocarcinoma growth. ELife, 2020, 9, .	2.8	18
12	Low-dose photodynamic therapy promotes a cytotoxic immunological response in a murine model of pleural mesothelioma. European Journal of Cardio-thoracic Surgery, 2020, 58, 783-791.	0.6	6
13	Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nature Cell Biology, 2019, 21, 1403-1412.	4.6	254
14	RANKL Signaling Sustains Primary Tumor Growth in Genetically Engineered Mouse Models of Lung Adenocarcinoma. Journal of Thoracic Oncology, 2018, 13, 387-398.	0.5	18
15	Cellular Composition and Contribution of Tertiary Lymphoid Structures to Tumor Immune Infiltration and Modulation by Radiation Therapy. Frontiers in Oncology, 2018, 8, 256.	1.3	30
16	Glucose transporters in cancer – from tumor cells to the tumor microenvironment. FEBS Journal, 2018, 285, 2926-2943.	2.2	341
17	Snail mediates repression of the Dlk1-Dio3 locus in lung tumor-infiltrating immune cells. Oncotarget, 2018, 9, 32331-32345.	0.8	5
18	RIP4 inhibits STAT3 signaling to sustain lung adenocarcinoma differentiation. Cell Death and Differentiation. 2017. 24. 1761-1771.	5.0	26

ETIENNE MEYLAN

#	Article	IF	CITATIONS
19	RIP off STAT3 to counteract tumor progression. Cell Cycle, 2017, 16, 1727-1728.	1.3	3
20	Mutant <i> <scp>CTNNB</scp> 1 </i> and histological heterogeneity define metabolic subtypes of hepatoblastoma. EMBO Molecular Medicine, 2017, 9, 1589-1604.	3.3	38
21	Neutrophils and Snail Orchestrate the Establishment of a Pro-tumor Microenvironment in Lung Cancer. Cell Reports, 2017, 21, 3190-3204.	2.9	167
22	Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF ^{high} neutrophils. Science, 2017, 358, .	6.0	270
23	GLUT3 is induced during epithelial-mesenchymal transition and promotes tumor cell proliferation in non-small cell lung cancer. Cancer & Metabolism, 2014, 2, 11.	2.4	115
24	Targeting receptor activator of nuclear factor-kappa B as a new therapy for bone metastasis in non-small cell lung cancer. Current Opinion in Oncology, 2013, 25, 137-144.	1.1	22
25	RANKing lung cancer bone metastasis. Lung Cancer Management, 2012, 1, 87-90.	1.5	0
26	Regulation of Monocyte Functional Heterogeneity by miR-146a and Relb. Cell Reports, 2012, 1, 317-324.	2.9	105
27	Caspase-2-Mediated Cleavage of Mdm2 Creates a p53-Induced Positive Feedback Loop. Molecular Cell, 2011, 43, 57-71.	4.5	139
28	Response and Resistance to NF-κB Inhibitors in Mouse Models of Lung Adenocarcinoma. Cancer Discovery, 2011, 1, 236-247.	7.7	116
29	Cleavage of mitochondrial antiviral signaling protein in the liver of patients with chronic hepatitis C correlates with a reduced activation of the endogenous interferon system. Hepatology, 2010, 51, 1127-1136.	3.6	115
30	DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NFâ€₽B. EMBO Reports, 2009, 10, 916-922.	2.0	290
31	Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 2009, 462, 108-112.	13.7	2,707
32	Requirement for NF-κB signalling in a mouse model of lung adenocarcinoma. Nature, 2009, 462, 104-107.	13.7	483
33	Intracellular pattern-recognition receptorsâ [~] †. Advanced Drug Delivery Reviews, 2008, 60, 830-840.	6.6	41
34	NLRX1: friend or foe?. EMBO Reports, 2008, 9, 243-245.	2.0	9
35	IRAK2 takes its place in TLR signaling. Nature Immunology, 2008, 9, 581-582.	7.0	50
36	TRADD Protein Is an Essential Component of the RIG-like Helicase Antiviral Pathway. Immunity, 2008, 28, 651-661.	6.6	280

ETIENNE MEYLAN

#	Article	IF	CITATIONS
37	Toll-Like Receptors and RNA Helicases: Two Parallel Ways to Trigger Antiviral Responses. Molecular Cell, 2006, 22, 561-569.	4.5	343
38	Intracellular pattern recognition receptors in the host response. Nature, 2006, 442, 39-44.	13.7	1,051
39	Intracellular Trafficking of Interleukin-1 Receptor I Requires Tollip. Current Biology, 2006, 16, 2265-2270.	1.8	120
40	Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature, 2005, 437, 1167-1172.	13.7	2,136
41	The RIP kinases: crucial integrators of cellular stress. Trends in Biochemical Sciences, 2005, 30, 151-159.	3.7	359
42	RIP1 is an essential mediator of Toll-like receptor 3–induced NF-κB activation. Nature Immunology, 2004, 5, 503-507.	7.0	744
43	Identification of Bacterial Muramyl Dipeptide as Activator of the NALP3/Cryopyrin Inflammasome. Current Biology, 2004, 14, 1929-1934.	1.8	512
44	RIP4 (DIK/PKK), a novel member of the RIP kinase family, activates NFâ€̂₽B and is processed during apoptosis. EMBO Reports, 2002, 3, 1201-1208.	2.0	132