Dawei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2825325/publications.pdf

Version: 2024-02-01

45 papers

2,366 citations

218677 26 h-index 243625 44 g-index

48 all docs 48 docs citations

48 times ranked 2500 citing authors

#	Article	IF	CITATIONS
1	Functional Capsules via Subcomponent Self-Assembly. Accounts of Chemical Research, 2018, 51, 2423-2436.	15.6	380
2	Metal–organic cages for molecular separations. Nature Reviews Chemistry, 2021, 5, 168-182.	30.2	227
3	Emergence of Hemicryptophanes: From Synthesis to Applications for Recognition, Molecular Machines, and Supramolecular Catalysis. Chemical Reviews, 2017, 117, 4900-4942.	47.7	160
4	Acid strength controlled reaction pathways for the catalytic cracking of 1-butene to propene over ZSM-5. Journal of Catalysis, 2014, 309, 136-145.	6.2	145
5	Selective Anion Extraction and Recovery Using a Fe ^{II} ₄ L ₄ Cage. Angewandte Chemie - International Edition, 2018, 57, 3717-3721.	13.8	117
6	Anion Binding in Water Drives Structural Adaptation in an Azaphosphatrane-Functionalized Fe ^{II} ₄ L ₄ Tetrahedron. Journal of the American Chemical Society, 2017, 139, 6574-6577.	13.7	94
7	Oneâ€Pot Conversion of Carbon Dioxide, Ethylene Oxide, and Amines to 3â€Arylâ€2â€oxazolidinones Catalyzed with Binary Ionic Liquids. ChemCatChem, 2014, 6, 278-283.	3.7	87
8	Enantiopure [Cs ⁺ /XeâŠ,Cryptophane]âŠ,Fe ^{II} ₄ L ₄ Hierarchical Superstructures. Journal of the American Chemical Society, 2019, 141, 8339-8345.	13.7	83
9	Temperature Controls Guest Uptake and Release from Zn ₄ L ₄ Tetrahedra. Journal of the American Chemical Society, 2019, 141, 14534-14538.	13.7	74
10	Acid Strength Controlled Reaction Pathways for the Catalytic Cracking of 1-Pentene to Propene over ZSM-5. ACS Catalysis, 2015, 5, 4048-4059.	11.2	71
11	Selective Separation of Polyaromatic Hydrocarbons by Phase Transfer of Coordination Cages. Journal of the American Chemical Society, 2019, 141, 18949-18953.	13.7	70
12	Recent advances in H ₂ PO ₄ ^{â^'} fluorescent sensors. RSC Advances, 2014, 4, 29735-29749.	3.6	65
13	A proof-of-concept fluorescent strategy for highly selective detection of Cr(vi) based on inner filter effect using a hydrophilic ionic chemosensor. Analytical Methods, 2013, 5, 1669.	2.7	55
14	A Cavityâ€Tailored Metalâ€Organic Cage Entraps Gases Selectively in Solution and the Amorphous Solid State. Angewandte Chemie - International Edition, 2021, 60, 11789-11792.	13.8	49
15	Improved Acid Resistance of a Metal–Organic Cage Enables Cargo Release and Exchange between Hosts. Angewandte Chemie - International Edition, 2020, 59, 7435-7438.	13.8	47
16	Transformation Network Culminating in a Heteroleptic Cd ₆ L ₆ L′ ₂ Twisted Trigonal Prism. Journal of the American Chemical Society, 2020, 142, 9152-9157.	13.7	47
17	Selective Anion Extraction and Recovery Using a Fe ^{II} ₄ L ₄ Cage. Angewandte Chemie, 2018, 130, 3779-3783.	2.0	45
18	Novel benzimidazolium–urea-based macrocyclic fluorescent sensors: synthesis, ratiometric sensing of H2PO4┠and improvement of the anion binding performance via a synergistic binding strategy. Chemical Communications, 2013, 49, 6149.	4.1	42

#	Article	IF	CITATIONS
19	Bioinspired Oxidation of Methane in the Confined Spaces of Molecular Cages. Inorganic Chemistry, 2019, 58, 7220-7228.	4.0	38
20	Acridine-based macrocyclic fluorescent sensors: self-assembly behavior characterized by crystal structures and a tunable bathochromic-shift in emission induced by H2PO4â^via adjusting the ring size and rigidity. Organic and Biomolecular Chemistry, 2013, 11, 3375.	2.8	37
21	Tailored oxido-vanadium(V) cage complexes for selective sulfoxidation in confined spaces. Chemical Science, 2017, 8, 789-794.	7.4	36
22	The immobilization of hydrophilic ionic liquid for Cr(vi) retention and chromium speciation. Journal of Analytical Atomic Spectrometry, 2010, 25, 1688.	3.0	35
23	Sterics and Hydrogen Bonding Control Stereochemistry and Self-Sorting in BINOL-Based Assemblies. Journal of the American Chemical Society, 2021, 143, 9009-9015.	13.7	35
24	A fluorescent heteroditopic hemicryptophane cage for the selective recognition of choline phosphate. Chemical Communications, 2015, 51, 2679-2682.	4.1	33
25	A birunctional acridine-based fluorescent sensor: ratiometric sensing of <mmi:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:msub><mml:mtext>H</mml:mtext><mml:mn> and obvious fluorescence quenching to the control of the control of</mml:mn></mml:msub></mml:mrow></mml:mrow></mml:mrow></mmi:math>	2 <b 119ml:m	n> 8/ mml:mst
26	Helical, Axial, and Central Chirality Combined in a Single Cage: Synthesis, Absolute Configuration, and Recognition Properties. Chemistry - A European Journal, 2016, 22, 8038-8042.	3.3	27
27	Sulfoxidation inside a <i>C</i> ₃ -Vanadium(V) Bowl-Shaped Catalyst. ACS Catalysis, 2017, 7, 7340-7345.	11.2	25
28	Largeâ€Scale Synthesis of Enantiopure Molecular Cages: Chiroptical and Recognition Properties. Chemistry - A European Journal, 2016, 22, 2068-2074.	3.3	23
29	Templation and Concentration Drive Conversion Between a Fe ^{II} ₁₂ L ₁₂ Pseudoicosahedron, a Fe ^{II} ₄ L ₄ Tetrahedron, and a Fe ^{II} ₂ L ₃ Helicate. Journal of the American Chemical Society, 2022,	13.7	21
30	"Breathing―Motion of a Modulable Molecular Cavity. Chemistry - A European Journal, 2017, 23, 6495-6498.	3.3	20
31	Synthesis, Resolution, and Absolute Configuration of Chiral Tris(2-pyridylmethyl)amine-Based Hemicryptophane Molecular Cages. Journal of Organic Chemistry, 2017, 82, 6082-6088.	3.2	18
32	Nâ€Heterocyclic Carbene Formation Induced Fluorescent and Colorimetric Sensing of Fluoride Using Perimidinium Derivatives. Chemistry - A European Journal, 2014, 20, 17161-17167.	3.3	17
33	CO ₂ atmosphere enables efficient catalytic hydration of ethylene oxide by ionic liquids/organic bases at low water/epoxide ratios. Green Chemistry, 2021, 23, 3386-3391.	9.0	15
34	Pyrene-appended, benzimidazoliums-urea-based ratiometric fluorescent chemosensor for highly selective detecting of H2PO4â^. Analytical Methods, 2013, 5, 3222.	2.7	14
35	A viologen-urea-based anion receptor: Colorimetric sensing of dicarboxylate anions. Chinese Chemical Letters, 2013, 24, 688-690.	9.0	11
36	Microfabrication-free fused silica nanofluidic interface for on chip electrokinetic stacking of DNA. Microfluidics and Nanofluidics, 2013, 14, 69-76.	2.2	11

#	Article	IF	Citations
37	Improved Acid Resistance of a Metal–Organic Cage Enables Cargo Release and Exchange between Hosts. Angewandte Chemie, 2020, 132, 7505-7508.	2.0	11
38	Azaphosphatranes as Hydrogenâ€Bonding Organocatalysts for the Activation of Carbonyl Groups: Investigation of Lactide Ringâ€Opening Polymerization. European Journal of Organic Chemistry, 2016, 2016, 1619-1624.	2.4	10
39	Nanofracture on fused silica microchannel for Donnan exclusion based electrokinetic stacking of biomolecules. Lab on A Chip, 2012, 12, 3408.	6.0	9
40	A Cavityâ€Tailored Metalâ€Organic Cage Entraps Gases Selectively in Solution and the Amorphous Solid State. Angewandte Chemie, 2021, 133, 11895-11898.	2.0	9
41	Selective recognition of acetate ion by perimidinium-based receptors. Tetrahedron Letters, 2012, 53, 6292-6296.	1.4	8
42	Insights into the Complexity of Weak Intermolecular Interactions Interfering in Host–Guest Systems. ChemPhysChem, 2015, 16, 2931-2935.	2.1	6
43	Synthesis of Bisâ€benzimidazolium Cyclic Receptors and Their Anion Binding Properties. Chinese Journal of Chemistry, 2013, 31, 673-678.	4.9	5
44	Control over the Free Space within Poly(ionic liquid)s for Selective Adsorption of "Size-Matching― Dyes. ACS Applied Polymer Materials, 2020, 2, 4864-4873.	4.4	3
45	Self-assembly of a large, closed capsule reminiscent of protein-cage formation. CheM, 2022, 8, 902-904.	11.7	O