
Julian Solway

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2825265/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Association of Vitamin D Levels, Race/Ethnicity, and Clinical Characteristics With COVID-19 Test Results. JAMA Network Open, 2021, 4, e214117.	2.8	52
2	Geography, generalisability, and susceptibility in clinical trials. Lancet Respiratory Medicine,the, 2021, 9, 330-332.	5.2	12
3	Clinical Characterization and Prediction of Clinical Severity of SARS-CoV-2 Infection Among US Adults Using Data From the US National COVID Cohort Collaborative. JAMA Network Open, 2021, 4, e2116901.	2.8	179
4	Pharmacogenetic studies of long-acting beta agonist and inhaled corticosteroid responsiveness in randomised controlled trials of individuals of African descent with asthma. The Lancet Child and Adolescent Health, 2021, 5, 862-872.	2.7	10
5	Characterizing Long COVID: Deep Phenotype of a Complex Condition. EBioMedicine, 2021, 74, 103722.	2.7	127
6	Tissue traction microscopy to quantify muscle contraction within precision-cut lung slices. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L323-L330.	1.3	11
7	Cytokine-induced molecular responses in airway smooth muscle cells inform genome-wide association studies of asthma. Genome Medicine, 2020, 12, 64.	3.6	14
8	Association of Vitamin D Status and Other Clinical Characteristics With COVID-19 Test Results. JAMA Network Open, 2020, 3, e2019722.	2.8	384
9	Role of Isocitrate Dehydrogenase 2 on DNA Hydroxymethylation in Human Airway Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 36-45.	1.4	12
10	Reply. Journal of Allergy and Clinical Immunology, 2019, 144, 873-874.	1.5	0
11	Associations between fungal and bacterial microbiota of airways and asthma endotypes. Journal of Allergy and Clinical Immunology, 2019, 144, 1214-1227.e7.	1.5	96
12	Step-Up Therapy in Black Children and Adults with Poorly Controlled Asthma. New England Journal of Medicine, 2019, 381, 1227-1239.	13.9	44
13	Embedding research recruitment in a community resource e-prescribing system: lessons from an implementation study on Chicago's South Side. Journal of the American Medical Informatics Association: JAMIA, 2019, 26, 840-846.	2.2	9
14	Loss of bronchoprotection with ICS plus LABA treatment, β-receptor dynamics, and the effect of alendronate. Journal of Allergy and Clinical Immunology, 2019, 144, 416-425.e7.	1.5	6
15	Evidence for an IL-6–high asthma phenotype in asthmatic patients of African ancestry. Journal of Allergy and Clinical Immunology, 2019, 144, 304-306.e4.	1.5	15
16	High Pressure Freezing Airway Smooth Muscle Tissue at Physiological Length for Analysis of Contractile Filaments. Microscopy and Microanalysis, 2018, 24, 1224-1225.	0.2	0
17	Hypercapnia increases airway smooth muscle contractility via caspase-7–mediated miR-133a–RhoA signaling. Science Translational Medicine, 2018, 10, .	5.8	39
18	SM22 is required for the maintenance of actin-rich structures generated during bacterial infections. Experimental Cell Research, 2018, 369, 139-146.	1.2	2

#	Article	IF	CITATIONS
19	Associations between environmental quality and adult asthma prevalence in medical claims data. Environmental Research, 2018, 166, 529-536.	3.7	22
20	SM22 is needed for actinâ€rich structures formed by enteropathogenic <i>Escherichia coli</i> and <i>Listeria monocytogenes</i> . FASEB Journal, 2018, 32, 520.2.	0.2	0
21	Elevated levels of soluble humanleukocyte antigen-G in the airways are a marker for a low-inflammatory endotype of asthma. Journal of Allergy and Clinical Immunology, 2017, 140, 857-860.	1.5	13
22	Preexisting Type 2 Immune Activation Protects against the Development of Sepsis. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 628-630.	1.4	13
23	An inflammation-independent contraction mechanophenotype of airway smooth muscle in asthma. Journal of Allergy and Clinical Immunology, 2016, 138, 294-297.e4.	1.5	52
24	Corticosteroid therapy and airflow obstruction influence the bronchial microbiome, which is distinct from that of bronchoalveolar lavage in asthmatic airways. Journal of Allergy and Clinical Immunology, 2016, 137, 1398-1405.e3.	1.5	128
25	Genome-Wide Methylation Study Identifies an IL-13–induced Epigenetic Signature in Asthmatic Airways. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 376-385.	2.5	90
26	Chronic Activation of the Renin-Angiotensin System Induces Lung Fibrosis. Scientific Reports, 2015, 5, 15561.	1.6	49
27	Cyclooxygenase-2 and MicroRNA-155 Expression Are Elevated in Asthmatic Airway Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 2015, 52, 438-447.	1.4	49
28	Future Research Directions in Asthma. An NHLBI Working Group Report. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 1366-1372.	2.5	84
29	Stiffness-Activated GEF-H1 Expression Exacerbates LPS-Induced Lung Inflammation. PLoS ONE, 2014, 9, e92670.	1.1	36
30	Effect of Vitamin D ₃ on Asthma Treatment Failures in Adults With Symptomatic Asthma and Lower Vitamin D Levels. JAMA - Journal of the American Medical Association, 2014, 311, 2083.	3.8	236
31	Gata5 Deficiency Causes Airway Constrictor Hyperresponsiveness in Mice. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 787-795.	1.4	11
32	Genome-wide Interrogation of Longitudinal FEV ₁ in Children with Asthma. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 619-627.	2.5	17
33	Airway Contractility in the Precision-Cut Lung Slice after Cryopreservation. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 876-881.	1.4	40
34	Airway smooth muscle. Current Opinion in Pulmonary Medicine, 2014, 20, 66-72.	1.2	21
35	MicroRNA-146a and microRNA-146b expression and anti-inflammatory function in human airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L727-L734.	1.3	113
36	A genome-wide survey of CD4+ lymphocyte regulatory genetic variants identifies novel asthma genes. Journal of Allergy and Clinical Immunology, 2014, 134, 1153-1162.	1.5	46

#	Article	IF	CITATIONS
37	E3ÂUbiquitin Ligase Cbl-b Suppresses Proallergic T Cell Development and Allergic Airway Inflammation. Cell Reports, 2014, 6, 709-723.	2.9	56
38	Maternal asthma and microRNA regulation of soluble HLA-G in the airway. Journal of Allergy and Clinical Immunology, 2013, 131, 1496-1503.e4.	1.5	44
39	Emerging targets for novel therapy of asthma. Current Opinion in Pharmacology, 2013, 13, 324-330.	1.7	47
40	Airway smooth muscle in the pathophysiology and treatment of asthma. Journal of Applied Physiology, 2013, 114, 834-843.	1.2	130
41	miR-140-3p regulation of TNF-α-induced CD38 expression in human airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L460-L468.	1.3	92
42	Dilatation of the Constricted Human Airway by Tidal Expansion of Lung Parenchyma. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 225-232.	2.5	90
43	Genomic Medicine and Lung Diseases. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 280-285.	2.5	8
44	Upstream stimulatory factor 1 activates GATA5 expression through an E-box motif. Biochemical Journal, 2012, 446, 89-98.	1.7	20
45	Genetic Interactions between Chromosomes 11 and 18 Contribute to Airway Hyperresponsiveness in Mice. PLoS ONE, 2012, 7, e29579.	1.1	8
46	Mechanical and Structural Plasticity. , 2011, 1, 283-293.		5
47	Nuclear Import of Serum Response Factor in Airway Smooth Muscle. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 453-458.	1.4	2
48	Akt activation induces hypertrophy without contractile phenotypic maturation in airway smooth muscle. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 300, L701-L709.	1.3	21
49	Differential induction of CD38 expression by TNF-α in asthmatic airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 299, L879-L890.	1.3	38
50	p70 Ribosomal S6 Kinase Is Required for Airway Smooth Muscle Cell Size Enlargement but Not Increased Contractile Protein Expression. American Journal of Respiratory Cell and Molecular Biology, 2010, 42, 744-752.	1.4	27
51	MEK modulates force-fluctuation-induced relengthening of canine tracheal smooth muscle. European Respiratory Journal, 2010, 36, 630-637.	3.1	16
52	Postâ€Transcriptional Regulation of CD38 expression in human airway smooth muscle (HASM) cells. FASEB Journal, 2010, 24, 626.6.	0.2	0
53	Angiotensin I-Converting Enzyme Mutation (Trp1197Stop) Causes a Dramatic Increase in Blood ACE. PLoS ONE, 2009, 4, e8282.	1.1	31
54	Lysophosphatidic Acid Enhances Pulmonary Epithelial Barrier Integrity and Protects Endotoxin-induced Epithelial Barrier Disruption and Lung Injury. Journal of Biological Chemistry, 2009, 284, 24123-24132.	1.6	57

#	Article	IF	CITATIONS
55	Myosin, Transgelin, and Myosin Light Chain Kinase. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 194-204.	2.5	97
56	Alternative promoter and GATA5 transcripts in mouse. American Journal of Physiology - Renal Physiology, 2009, 297, G1214-G1222.	1.6	9
57	Disrupting Actin-Myosin-Actin Connectivity in Airway Smooth Muscle as a Treatment for Asthma?. Proceedings of the American Thoracic Society, 2009, 6, 295-300.	3.5	35
58	The University of Chicago Institute for Translational Medicine. Clinical and Translational Science, 2009, 2, 394-397.	1.5	1
59	Gene-environment interactions in a mutant mouse kindred with native airway constrictor hyperresponsiveness. Mammalian Genome, 2008, 19, 2-14.	1.0	3
60	Airway Smooth Muscle in Asthma. Annual Review of Pathology: Mechanisms of Disease, 2008, 3, 523-555.	9.6	68
61	Allele-Specific Targeting of microRNAs to HLA-G and Risk of Asthma. American Journal of Human Genetics, 2008, 82, 251.	2.6	3
62	Steroids augment relengthening of contracted airway smooth muscle: potential additional mechanism of benefit in asthma. European Respiratory Journal, 2008, 32, 1224-1230.	3.1	26
63	Force Fluctuation induced Relengthening of Acetylcholine-contracted Airway Smooth Muscle. Proceedings of the American Thoracic Society, 2008, 5, 68-72.	3.5	13
64	Lysophosphatidic acid-induced transactivation of epidermal growth factor receptor regulates cyclo-oxygenase-2 expression and prostaglandin E2 release via C/EBPβ in human bronchial epithelial cells. Biochemical Journal, 2008, 412, 153-162.	1.7	52
65	Airway Smooth Muscle as a Target for Asthma Therapy. New England Journal of Medicine, 2007, 356, 1367-1369.	13.9	46
66	Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma. European Respiratory Journal, 2007, 29, 834-860.	3.1	344
67	Allele-Specific Targeting of microRNAs to HLA-G and Risk of Asthma. American Journal of Human Genetics, 2007, 81, 829-834.	2.6	344
68	Signaling through Fcl ³ RIII is required for optimal T helper type (Th)2 responses and Th2-mediated airway inflammation. Journal of Experimental Medicine, 2007, 204, 1875-1889.	4.2	61
69	Tidal breathing pattern differentially antagonizes bronchoconstriction in C57BL/6J vs. A/J mice. Journal of Applied Physiology, 2006, 101, 249-255.	1.2	20
70	Inhibition of Th2-Mediated Allergic Airway Inflammatory Disease by CD137 Costimulation. Journal of Immunology, 2006, 177, 814-821.	0.4	29
71	Fas-positive T cells regulate the resolution of airway inflammation in a murine model of asthma. Journal of Experimental Medicine, 2006, 203, 1173-1184.	4.2	66
72	Inhibition of Transforming Growth Factor β-enhanced Serum Response Factor-dependent Transcription by SMAD7. Journal of Biological Chemistry, 2006, 281, 20383-20392.	1.6	32

#	Article	IF	CITATIONS
73	Expression Cloning Identifies Transgelin (SM22) as a Novel Repressor of 92-kDa Type IV Collagenase (MMP-9) Expression. Journal of Biological Chemistry, 2006, 281, 26424-26436.	1.6	104
74	Transforming Growth Factor-β1 and Disorders of the Lung. Cell Biochemistry and Biophysics, 2005, 43, 131-148.	0.9	37
75	Latrunculin B increases force fluctuation-induced relengthening of ACh-contracted, isotonically shortened canine tracheal smooth muscle. Journal of Applied Physiology, 2005, 98, 489-497.	1.2	51
76	Functional Characterization of Evolutionarily Conserved DNA Regions in Forkhead Box F1 Gene Locus. Journal of Biological Chemistry, 2005, 280, 37908-37916.	1.6	53
77	Variation inITGB3Is Associated with Asthma and Sensitization to Mold Allergen in Four Populations. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 67-73.	2.5	38
78	SRF Function in Vascular Smooth Muscle. Circulation Research, 2005, 97, 409-410.	2.0	2
79	Fine Mapping and Positional Candidate Studies Identify HLA-G as an Asthma Susceptibility Gene on Chromosome 6p21. American Journal of Human Genetics, 2005, 76, 349-357.	2.6	238
80	Phophatidylinositol-3 Kinase/Mammalian Target of Rapamycin/p70S6KRegulates Contractile Protein Accumulation in Airway Myocyte Differentiation. American Journal of Respiratory Cell and Molecular Biology, 2004, 31, 266-275.	1.4	88
81	Human Bronchial Smooth Muscle Cell Lines Show a Hypertrophic Phenotype Typical of Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 703-711.	2.5	43
82	The Use and Misuse of Penh in Animal Models of Lung Disease. American Journal of Respiratory Cell and Molecular Biology, 2004, 31, 373-374.	1.4	228
83	CAN WE DIFFERENTIATE BETWEEN AIRWAY AND VASCULAR SMOOTH MUSCLE?. Clinical and Experimental Pharmacology and Physiology, 2004, 31, 805-810.	0.9	14
84	On the terminology for describing the length-force relationship and its changes in airway smooth muscle. Journal of Applied Physiology, 2004, 97, 2029-2034.	1.2	81
85	A genome-wide search for allergic response (atopy) genes in three ethnic groups: Collaborative Study on the Genetics of Asthma. Human Genetics, 2004, 114, 157-164.	1.8	70
86	Pulmonary function in bronchopulmonary dysplasia. Pediatric Pulmonology, 2004, 37, 236-242.	1.0	145
87	Methodologic advancements in the study of airway smooth muscle. Journal of Allergy and Clinical Immunology, 2004, 114, S18-S31.	1.5	18
88	Rhinovirus 16 3C Protease Induces Interleukin-8 and Granulocyte-Macrophage Colony-Stimulating Factor Expression in Human Bronchial Epithelial Cells. Pediatric Research, 2004, 55, 13-18.	1.1	29
89	Treatment of Nasal Inflammation Decreases the Ability of Subjects with Asthma to Condition Inspired Air. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 863-869.	2.5	10
90	What Evidence Implicates Airway Smooth Muscle in the Cause of BHR?. Clinical Reviews in Allergy and Immunology, 2003, 24, 73-84.	2.9	38

#	Article	IF	CITATIONS
91	Functional significance of protein kinase A activation by endothelin-1 and ATP: negative regulation of SRF-dependent gene expression by PKA. Cellular Signalling, 2003, 15, 597-604.	1.7	41
92	Sequence variation in the promoter region of the cholinergic receptor muscarinic 3 gene and asthma and atopy. Journal of Allergy and Clinical Immunology, 2003, 111, 527-532.	1.5	30
93	Serum response factor function and dysfunction in smooth muscle. Respiratory Physiology and Neurobiology, 2003, 137, 223-235.	0.7	21
94	The RhoA/Rho Kinase Pathway Regulates Nuclear Localization of Serum Response Factor. American Journal of Respiratory Cell and Molecular Biology, 2003, 29, 39-47.	1.4	137
95	Lymphotoxin Is Required for Maintaining Physiological Levels of Serum IgE That Minimizes Th1-mediated Airway Inflammation. Journal of Experimental Medicine, 2003, 198, 1643-1652.	4.2	43
96	Elevation of the Nasal Mucosal Surface Temperature After Warming of the Feet Occurs Via a Neural Reflex. Acta Oto-Laryngologica, 2003, 123, 627-636.	0.3	12
97	Actin Dynamics. Chest, 2003, 123, 392S-398S.	0.4	19
98	Invited Review: Do inflammatory mediators influence the contribution of airway smooth muscle contraction to airway hyperresponsiveness in asthma?. Journal of Applied Physiology, 2003, 95, 844-853.	1.2	68
99	Elevation of the nasal mucosal surface temperature after warming of the feet occurs via a neural reflex. Acta Oto-Laryngologica, 2003, 123, 627-36.	0.3	1
100	Structure and Transcription of the Human m3 Muscarinic Receptor Gene. American Journal of Respiratory Cell and Molecular Biology, 2002, 26, 298-305.	1.4	31
101	Intranasal budesonide does not affect the ability of asthmatics to warm and humidify inspired air. Journal of Allergy and Clinical Immunology, 2002, 109, S104-S104.	1.5	0
102	Genomewide Screen and Identification of Gene-Gene Interactions for Asthma-Susceptibility Loci in Three U.S. Populations: Collaborative Study on the Genetics of Asthma. American Journal of Human Genetics, 2001, 68, 1437-1446.	2.6	225
103	Ethnic differences in asthma and associated phenotypes: Collaborative Study on the Genetics of Asthma. Journal of Allergy and Clinical Immunology, 2001, 108, 357-362.	1.5	99
104	Supine position decreases the ability of the nose to warm and humidify air. Journal of Applied Physiology, 2001, 91, 2459-2465.	1.2	18
105	Invited Review: Molecular mechanisms of phenotypic plasticity in smooth muscle cells. Journal of Applied Physiology, 2001, 90, 358-368.	1.2	241
106	The Nasal Passage of Subjects with Asthma Has a Decreased Ability to Warm and Humidify Inspired Air. American Journal of Respiratory and Critical Care Medicine, 2001, 164, 1640-1646.	2.5	37
107	Mild Asthma. New England Journal of Medicine, 2001, 345, 1257-1262.	13.9	26
108	Mutagenesis analysis of human SM22: characterization of actin binding. Journal of Applied Physiology, 2000, 89, 1985-1990.	1.2	110

#	Article	IF	CITATIONS
109	Fas cross-linking induces apoptosis in human airway smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 278, L618-L624.	1.3	41
110	Selective restoration of calcium coupling to muscarinic M3 receptors in contractile cultured airway myocytes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 278, L1091-L1100.	1.3	58
111	What Makes the Airways Contract Abnormally? Is It Inflammation?. American Journal of Respiratory and Critical Care Medicine, 2000, 161, S164-S167.	2.5	12
112	Ipratropium Bromide Increases the Ability of the Nose to Warm and Humidify Air. American Journal of Respiratory and Critical Care Medicine, 2000, 162, 1031-1037.	2.5	21
113	β2-Adrenergic Receptor Arg16/Arg16 Genotype Is Associated with Reduced Lung Function, but Not with Asthma, in the Hutterites. American Journal of Respiratory and Critical Care Medicine, 2000, 162, 599-602.	2.5	88
114	Physiological Control of Smooth Muscle-specific Gene Expression through Regulated Nuclear Translocation of Serum Response Factor. Journal of Biological Chemistry, 2000, 275, 30387-30393.	1.6	104
115	Variation in the Interleukin 4–Receptor α Gene Confers Susceptibility to Asthma and Atopy in Ethnically Diverse Populations. American Journal of Human Genetics, 2000, 66, 517-526.	2.6	251
116	HLA-DRB1*01 alleles are associated with sensitization to cockroach allergens. Journal of Allergy and Clinical Immunology, 2000, 105, 960-966.	1.5	37
117	Natural and induced allergic responses increase the ability of the nose to warm and humidify air. Journal of Allergy and Clinical Immunology, 2000, 106, 1045-1052.	1.5	18
118	Divergent differentiation paths in airway smooth muscle culture: induction of functionally contractile myocytes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L197-L206.	1.3	117
119	A technique to measure the ability of the human nose to warm and humidify air. Journal of Applied Physiology, 1999, 87, 400-406.	1.2	113
120	Bronchoalveolar Lavage Fluid from Asthmatic Subjects Is Mitogenic for Human Airway Smooth Muscle. American Journal of Respiratory and Critical Care Medicine, 1999, 160, 2062-2066.	2.5	83
121	Expression and Cytogenetic Localization of the Human SM22 Gene (TAGLN). Genomics, 1998, 49, 452-457.	1.3	78
122	Transcriptional Regulation of Smooth Muscle Contractile Apparatus Expression. American Journal of Respiratory and Critical Care Medicine, 1998, 158, S100-S108.	2.5	42
123	Perhaps Airway Smooth Muscle Dysfunction Contributes to Asthmatic Bronchial Hyperresponsiveness After All. American Journal of Respiratory Cell and Molecular Biology, 1997, 17, 144-146.	1.4	129
124	A genome-wide search for asthma susceptibility loci in ethnically diverse populations. Nature Genetics, 1997, 15, 389-392.	9.4	709
125	2A3 and 3F9: Novel Lung Epithelial Antigens With Early Upregulation in Hyperoxic and Radiation Lung Injury Models. Chest, 1996, 109, 33S.	0.4	0
126	Developmental Pattern of Expression and Genomic Organization of the Calponin-h1 Gene. Journal of Biological Chemistry, 1996, 271, 395-403.	1.6	107

#	Article	IF	CITATIONS
127	p172: An alveolar type II and Clara cell specific protein with late developmental expression and upregulation by hyperoxic lung injury American Journal of Respiratory Cell and Molecular Biology, 1996, 14, 538-547.	1.4	5
128	Structure and Expression of a Smooth Muscle Cell-specific Gene, SM22α. Journal of Biological Chemistry, 1995, 270, 13460-13469.	1.6	240
129	Histamine Antagonizes Serotonin and Growth Factor-induced Mitogen-activated Protein Kinase Activation in Bovine Tracheal Smooth Muscle Cells. Journal of Biological Chemistry, 1995, 270, 19908-19913.	1.6	64
130	Structural and Functional Abnormalities of the Airways of Hyperoxia-Exposed Immature Rats. Chest, 1995, 107, 89S-93S.	0.4	14
131	In vivo hyperoxic exposure increases cultured lung fibroblast proliferation and c-Ha-ras expression American Journal of Respiratory Cell and Molecular Biology, 1995, 12, 19-26.	1.4	15
132	Persistent airway hyperresponsiveness and histologic alterations after chronic antigen challenge in cats American Journal of Respiratory and Critical Care Medicine, 1995, 151, 184-193.	2.5	176
133	Bronchoalveolar lavage fluid from immature rats with hyperoxia-induced airway remodeling is mitogenic for airway smooth muscle American Journal of Respiratory Cell and Molecular Biology, 1995, 12, 268-274.	1.4	7
134	Hypertonicity, but not hypothermia, elicits substance P release from rat C-fiber neurons in primary culture Journal of Clinical Investigation, 1995, 95, 2359-2366.	3.9	42
135	Airway reopening pressure in isolated rat lungs. Journal of Applied Physiology, 1994, 76, 1372-1377.	1.2	83
136	Influences of parenchymal tethering on the reopening of closed pulmonary airways. Journal of Applied Physiology, 1994, 76, 2095-2105.	1.2	49
137	Recovery of airway structure and function after hyperoxic exposure in immature rats American Journal of Respiratory and Critical Care Medicine, 1994, 149, 1663-1669.	2.5	29
138	Hydrogen peroxide stimulates mitogen-activated protein kinase in bovine tracheal myocytes: implications for human airway disease American Journal of Respiratory Cell and Molecular Biology, 1994, 11, 577-585.	1.4	74
139	Hyperoxia increases airway cell S-phase traversal in immature rats in vivo American Journal of Respiratory Cell and Molecular Biology, 1994, 11, 296-303.	1.4	35
140	Impaired Sensorineural Function after Allergen-induced Mediator Release. The American Review of Respiratory Disease, 1993, 148, 447-454.	2.9	4
141	Proliferation of Guinea Pig Tracheal Epithelial Cells Induced by Calcitonin Gene-related Peptide. American Journal of Respiratory Cell and Molecular Biology, 1993, 8, 592-596.	1.4	67
142	Augmented Muscarinic Responsiveness Caused by 5-Lipoxygenase Products Secreted from Alveolar Macrophages in Isolated-perfused Rat Lung. The American Review of Respiratory Disease, 1993, 147, 1514-1520.	2.9	9
143	Endogenous Sensory Neuropeptide Release Enhances Nonspecific Airway Responsiveness in Guinea Pigs: Reply. The American Review of Respiratory Disease, 1993, 147, 779-779.	2.9	0
144	Construction and uses of a concentric catheter for gas sampling in lung airways. Journal of Applied Physiology, 1993, 74, 3063-3067.	1.2	3

#	Article	IF	CITATIONS
145	Tachykinin receptor antagonists inhibit hyperpnea-induced bronchoconstriction in guinea pigs Journal of Clinical Investigation, 1993, 92, 315-323.	3.9	43
146	Endogenous Sensory Neuropeptide Release Enhances Nonspecific Airway Responsiveness in Guinea Pigs. The American Review of Respiratory Disease, 1992, 146, 148-153.	2.9	53
147	Hyperoxia-induced Airway Remodeling in Immature Rats: Correlation with Airway Responsiveness. The American Review of Respiratory Disease, 1992, 146, 1294-1300.	2.9	41
148	Heat and Water Exchange. The American Review of Respiratory Disease, 1992, 146, 1357-1358.	2.9	0
149	Sensory neuropeptides and airway function. Journal of Applied Physiology, 1991, 71, 2077-2087.	1.2	230
150	Breathing pattern affects respiratory heat loss but not bronchoconstrictor response in asthma. Lung, 1990, 168, 23-34.	1.4	9
151	Longitudinal distribution of canine respiratory heat and water exchanges. Journal of Applied Physiology, 1989, 66, 2788-2798.	1.2	19
152	Dissociation of Temperature-Gradient and Evaporative Heat Loss during Cold Gas Hyperventilation in Cold-induced Asthma. The American Review of Respiratory Disease, 1988, 138, 540-546.	2.9	25
153	Pressure, flow, and density relationships in airway models during constant-flow ventilation. Journal of Applied Physiology, 1988, 64, 2066-2073.	1.2	38
154	Lobar contribution to VA/Q inequality during constant-flow ventilation. Journal of Applied Physiology, 1988, 65, 2132-2137.	1.2	6
155	Properties of steady maximal expiratory flow within excised canine central airways. Journal of Applied Physiology, 1988, 64, 1650-1658.	1.2	6
156	Distribution of airway contractile responses within the major diameter bronchi during exogenous bronchoconstriction. The American Review of Respiratory Disease, 1987, 135, 1105-11.	2.9	32
157	CO2 elimination by high-frequency oscillation: effects of vagosympathetic stimulation. Journal of Applied Physiology, 1986, 61, 1836-1842.	1.2	0
158	Expiratory flow limitation and dynamic pulmonary hyperinflation during high-frequency ventilation. Journal of Applied Physiology, 1986, 60, 2071-2078.	1.2	39
159	Circulatory heat sources for canine respiratory heat exchange Journal of Clinical Investigation, 1986, 78, 1015-1019.	3.9	19
160	Thermal mapping of the airways in humans. Journal of Applied Physiology, 1985, 58, 564-570.	1.2	362
161	Radiographic visualization of airway wall movement during oscillatory flow in dogs. Journal of Applied Physiology, 1985, 58, 645-652.	1.2	25
162	Effect of bias flow rate on gas transport during high-frequency oscillatory ventilation. Respiration Physiology, 1985, 60, 267-276.	2.8	6

#	Article	IF	CITATIONS
163	Breathing pattern affects airway wall temperature during cold air hyperpnea in humans. The American Review of Respiratory Disease, 1985, 132, 853-7.	2.9	23
164	Gas mixing during high-frequency ventilation: an improved model. Journal of Applied Physiology, 1984, 57, 493-506.	1.2	27
165	Calcium Channel Blocking Agents in Bronchial Hyperreactivity. Journal of Asthma, 1984, 21, 419-426.	0.9	Ο
166	Influence of cromolyn sodium on airway temperature in normal subjects. The American Review of Respiratory Disease, 1984, 130, 1002-5.	2.9	8
167	Airway Smooth Muscle: Role in Airway Constrictor Hyperresponsiveness. , 0, , 53-69.		0