Raffaele Altara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/282525/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conflicting vascular and metabolic impact of the IL-33/sST2 axis. Cardiovascular Research, 2018, 114, 1578-1594.	1.8	96
2	CXCL10 Is a Circulating Inflammatory Marker in Patients with Advanced Heart Failure: a Pilot Study. Journal of Cardiovascular Translational Research, 2016, 9, 302-314.	1.1	68
3	Emerging importance of chemokine receptor CXCR3 and its ligands in cardiovascular diseases. Clinical Science, 2016, 130, 463-478.	1.8	67
4	Pivotal Importance of STAT3 in Protecting the Heart from Acute and Chronic Stress: New Advancement and Unresolved Issues. Frontiers in Cardiovascular Medicine, 2015, 2, 36.	1.1	64
5	Myocardial Infarction Superimposed on Aging: MMP-9 Deletion Promotes M2 Macrophage Polarization. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 475-483.	1.7	62
6	The CXCL10/CXCR3 Axis and Cardiac Inflammation: Implications for Immunotherapy to Treat Infectious and Noninfectious Diseases of the Heart. Journal of Immunology Research, 2016, 2016, 1-12.	0.9	61
7	Etiology-Dependent Impairment of Diastolic Cardiomyocyte Calcium Homeostasis in HeartÂFailure With Preserved Ejection Fraction. Journal of the American College of Cardiology, 2021, 77, 405-419.	1.2	54
8	Targeting Obesity and Diabetes to Treat Heart Failure with Preserved Ejection Fraction. Frontiers in Endocrinology, 2017, 8, 160.	1.5	50
9	IL-33 (Interleukin 33)/sST2 Axis in Hypertension and Heart Failure. Hypertension, 2018, 72, 818-828.	1.3	44
10	Diurnal rhythms of serum and plasma cytokine profiles in healthy elderly individuals assessed using membrane based multiplexed immunoassay. Journal of Translational Medicine, 2015, 13, 129.	1.8	40
11	Left Ventricular Dysfunction and CXCR3 Ligands in Hypertension: From Animal Experiments to a Population-Based Pilot Study. PLoS ONE, 2015, 10, e0141394.	1.1	40
12	The circular relationship between matrix metalloproteinaseâ€9 and inflammation following myocardial infarction. IUBMB Life, 2015, 67, 611-618.	1.5	38
13	Nicotinamide adenine dinucleotide: Biosynthesis, consumption and therapeutic role in cardiac diseases. Acta Physiologica, 2021, 231, e13551.	1.8	34
14	Hepatitis C virus (HCV)-driven stimulation of subfamily-restricted natural IgM antibodies in mixed cryoglobulinemia. Autoimmunity Reviews, 2008, 7, 468-472.	2.5	33
15	Macrophage responses associated with COVID-19: A pharmacological perspective. European Journal of Pharmacology, 2020, 887, 173547.	1.7	27
16	Cerebral blood flow alteration following acute myocardial infarction in mice. Bioscience Reports, 2018, 38, .	1.1	23
17	STAT3 and Endothelial Cell—Cardiomyocyte Dialog in Cardiac Remodeling. Frontiers in Cardiovascular Medicine, 2019, 6, 50	1.1	21
18	Temporal cardiac remodeling post-myocardial infarction: dynamics and prognostic implications in personalized medicine. Heart Failure Reviews, 2016, 21, 25-47.	1.7	18

RAFFAELE ALTARA

#	Article	IF	CITATIONS
19	Soluble Apoptotic Factors and Adhesion Molecules in Rhegmatogenous Retinal Detachment. , 2011, 52, 4256.		17
20	Cardiac STAT3 Deficiency Impairs Contractility and Metabolic Homeostasis in Hypertension. Frontiers in Pharmacology, 2016, 7, 436.	1.6	17
21	Impact of the Renin–Angiotensin System on the Endothelium in Vascular Dementia: Unresolved Issues and Future Perspectives. International Journal of Molecular Sciences, 2020, 21, 4268.	1.8	16
22	Role of ranolazine in heart failure: From cellular to clinic perspective. European Journal of Pharmacology, 2022, 919, 174787.	1.7	14
23	Update on the Protective Role of Regulatory T Cells in Myocardial Infarction: A Promising Therapy to Repair the Heart. Journal of Cardiovascular Pharmacology, 2016, 68, 401-413.	0.8	12
24	Cardioprotective Effects of the Novel Compound Vastiras in a Preclinical Model of End-Organ Damage. Hypertension, 2020, 75, 1195-1204.	1.3	11
25	Early cardiac-chamber-specific fingerprints in heart failure with preserved ejection fraction detected by FTIR and Raman spectroscopic techniques. Scientific Reports, 2022, 12, 3440.	1.6	11
26	Improving membrane based multiplex immunoassays for semi-quantitative detection of multiple cytokines in a single sample. BMC Biotechnology, 2014, 14, 63.	1.7	9
27	Insights into the modulation of the interferon response and NAD+ in the context of COVID-19. International Reviews of Immunology, 2021, , 1-11.	1.5	7
28	Deleting Vascular ADAM17 Sheds New Light on Hypertensive Cardiac Hypertrophy. Hypertension, 2016, 68, 849-850.	1.3	6
29	In Silico Analysis of Differential Gene Expression in Three Common Rat Models of Diastolic Dysfunction. Frontiers in Cardiovascular Medicine, 2018, 5, 11.	1.1	6
30	Untangling the Interplay Between Mitochondrial Fission and NF-κB Signaling in Endothelial Inflammation. Hypertension, 2020, 76, 23-25.	1.3	6
31	Atrial Natriuretic Peptide31–67: A Novel Therapeutic Factor for Cardiovascular Diseases. Frontiers in Physiology, 2021, 12, 691407.	1.3	6
32	Sex-based differences in myocardial infarction-induced kidney damage following cigarette smoking exposure: more renal protection in premenopausal female mice. Bioscience Reports, 2020, 40, .	1.1	5
33	What Role do Mitochondria Have in Diastolic Dysfunction? Implications for Diabetic Cardiomyopathy and Heart Failure With Preserved Ejection Function. Journal of Cardiovascular Pharmacology, 2022, 79, 399-406.	0.8	5
34	The Role of Inflammation in Myocardial Infarction. , 2015, , 39-65.		4
35	Editorial: Cardiac Microvascular Endothelium Contribution to Cardiac Myocyte Growth, Structure, and Contractile Function. Frontiers in Cardiovascular Medicine, 2019, 6, 130.	1.1	4
36	Circulating CXCLâ€9, â€10 and â€11 Levels Improve the Discrimination of Risk Prediction Models for Left Ventricular Dysfunction. FASEB Journal, 2015, 29, 46.2.	0.2	4

RAFFAELE ALTARA

#	Article	IF	CITATIONS
37	The Angiotensin II Type 1(AT1) Receptor and Cardiac Hypertrophy: Did We Have It Wrong All Along?. Journal of Cardiovascular Pharmacology, 2021, 77, 531-535.	0.8	3
38	Unravelling the impact of intrauterine growth restriction on heart development: insights into mitochondria and sexual dimorphism from a non-hominoid primate. Clinical Science, 2021, 135, 1767-1772.	1.8	3
39	Conflicting mechanisms of AT2 cardioprotection revealed. Cardiovascular Research, 2016, 112, 426-428.	1.8	2
40	Editorial: Immunomodulatory Approaches in Cardiovascular Diseases. Frontiers in Cardiovascular Medicine, 2022, 9, 873452.	1.1	2
41	Technological Aspects of Measuring Inflammatory Markers. , 2015, , 117-130.		0
42	Distorted assessment of left atrial size by echocardiography in patients with increased aortic root diameter. Egyptian Heart Journal, 2021, 73, 55.	0.4	0
43	Identification and characterization of new biomarkers that can predict the development of heart failure in hypertrophic cardiomyopathy. FASEB Journal, 2011, 25, 1033.3.	0.2	0
44	Translating heart failure biomarkers from animal models to humans. FASEB Journal, 2012, 26, lb614.	0.2	0
45	Circulating inflammatory mediators as potential biomarkers for Heart Failure: a study of the baseline levels in healthy volunteers. FASEB Journal, 2013, 27, 1128.11.	0.2	0
46	JAK-STAT Signaling in Cardiovascular Disease. , 2020, , 103-122.		0

JAK-STAT Signaling in Cardiovascular Disease. , 2020, , 103-122. 46