
Yonghong Deng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2825060/publications.pdf Version: 2024-02-01

YONCHONG DENC

#	Article	IF	CITATIONS
1	Gas Generation Mechanism in Liâ€Metal Batteries. Energy and Environmental Materials, 2022, 5, 327-336.	12.8	27
2	Understanding the lithium dendrites growth in garnet-based solid-state lithium metal batteries. Journal of Power Sources, 2022, 521, 230921.	7.8	24
3	Cryoâ€Electron Tomography of Highly Deformable and Adherent Solidâ€Electrolyte Interphase Exoskeleton in Liâ€Metal Batteries with Etherâ€Based Electrolyte. Advanced Materials, 2022, 34, e2108252.	21.0	20
4	Cryoâ€Electron Tomography of Highly Deformable and Adherent Solidâ€Electrolyte Interphase Exoskeleton in Liâ€Metal Batteries with Etherâ€Based Electrolyte (Adv. Mater. 13/2022). Advanced Materials, 2022, 34, .	21.0	2
5	Integrated design of ultrathin crosslinked network polymer electrolytes for flexible and stable all-solid-state lithium batteries. Energy Storage Materials, 2022, 47, 453-461.	18.0	63
6	A Polymer-in-Salt Electrolyte Enables Room Temperature Lithium Metal Batteries. Journal of the Electrochemical Society, 2022, 169, 040562.	2.9	2
7	Room-temperature all-solid-state lithium metal batteries based on ultrathin polymeric electrolytes. Journal of Materials Chemistry A, 2022, 10, 13969-13977.	10.3	10
8	A three-dimensional crosslinked chitosan sulfate network binder for high-performance Li–S batteries. Journal of Energy Chemistry, 2021, 56, 171-178.	12.9	22
9	A Fourâ€Armed Polyacrylic Acid Homopolymer Binder with Enhanced Performance for SiO <i>_x</i> /Graphite Anode. Macromolecular Materials and Engineering, 2021, 306, .	3.6	8
10	Metal chelation based supramolecular self-assembly enables a high-performance organic anode for lithium ion batteries. Chemical Engineering Journal, 2021, 413, 127525.	12.7	8
11	Additive stabilization of SEI on graphite observed using cryo-electron microscopy. Energy and Environmental Science, 2021, 14, 4882-4889.	30.8	73
12	Formation of Excellent Cathode/Electrolyte Interface with UV-Cured Polymer Electrolyte through In Situ Strategy. Journal of the Electrochemical Society, 2021, 168, 020511.	2.9	10
13	Natural Cocoons Enabling Flexible and Stable Fabric Lithium–Sulfur Full Batteries. Nano-Micro Letters, 2021, 13, 84.	27.0	30
14	Water-based dual-network conductive polymer binders for high-performance Li–S batteries. Electrochimica Acta, 2021, 371, 137822.	5.2	13
15	Poor Stability of Li ₂ CO ₃ in the Solid Electrolyte Interphase of a Lithiumâ€Metal Anode Revealed by Cryoâ€Electron Microscopy. Advanced Materials, 2021, 33, e2100404.	21.0	147
16	Stable Lithium Metal Anodes with a GaO <i>_x</i> Artificial Solid Electrolyte Interphase in Damp Air. ACS Applied Materials & Interfaces, 2021, 13, 21467-21473.	8.0	9
17	Probing the Na metal solid electrolyte interphase via cryo-transmission electron microscopy. Nature Communications, 2021, 12, 3066.	12.8	92
18	Composite polymer electrolytes with uniform distribution of ionic liquid-grafted ZIF-90 nanofillers for high-performance solid-state Li batteries. Chemical Engineering Journal, 2021, 412, 128733.	12.7	66

#	Article	IF	CITATIONS
19	Tale of Three Phosphate Additives for Stabilizing NCM811/Graphite Pouch Cells: Significance of Molecular Structure–Reactivity in Dictating Interphases and Cell Performance. ACS Applied Materials & Interfaces, 2021, 13, 29676-29690.	8.0	13
20	Siliconâ€Based Lithium Ion Battery Systems: Stateâ€ofâ€theâ€Art from Half and Full Cell Viewpoint. Advanced Functional Materials, 2021, 31, 2102546.	14.9	83
21	Roomâ€Temperature Solidâ€State Lithium Metal Batteries Using Metal Organic Framework Composited Combâ€Like Methoxy Poly(ethylene glycol) Acrylate Solid Polymer Electrolytes. Macromolecular Materials and Engineering, 2021, 306, 2100336.	3.6	7
22	Generating lithium fluoride-abundant interphase on layered lithium-rich oxide cathode with lithium 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide. Journal of Power Sources, 2021, 507, 230278.	7.8	11
23	Enabling high-energy flexible solid-state lithium ion batteries at room temperature. Chemical Engineering Journal, 2021, 424, 130335.	12.7	13
24	An <i>in situ</i> photopolymerized composite solid electrolyte from halloysite nanotubes and comb-like polycaprolactone for high voltage lithium metal batteries. Journal of Materials Chemistry A, 2021, 9, 9826-9836.	10.3	29
25	Poly (methyl vinyl ether-alt-maleic anhydride) as an ecofriendly electrolyte additive for high-voltage lithium-rich oxides with improved stability of interphase. Electrochimica Acta, 2021, 400, 139467.	5.2	4
26	Cathode-anode reaction products interplay enabling high performance of LiNi0.8Co0.1Mn0.1O2/artificial graphite pouch batteries at elevated temperature. Journal of Power Sources, 2021, 514, 230583.	7.8	8
27	LiCoO2/Graphite Cells with Localized High Concentration Carbonate Electrolytes for Higher Energy Density. Liquids, 2021, 1, 60-74.	2.5	5
28	Enhanced Thermoelectric Performance by Strong Phonon Scattering at the Heterogeneous Interfaces of the Mg ₂ Sn/Mg ₃ Sb ₂ High-Content Nanocomposite. ACS Applied Materials & Interfaces, 2021, 13, 56164-56170.	8.0	11
29	FeIII chelated organic anode with ultrahigh rate performance and ultra-long cycling stability for lithium-ion batteries. Energy Storage Materials, 2020, 24, 432-438.	18.0	25
30	An In Situ Polymerized Comb-Like PLA/PEG-based Solid Polymer Electrolyte for Lithium Metal Batteries. Journal of the Electrochemical Society, 2020, 167, 070504.	2.9	24
31	Sunlight helps self-healing of liquid-crystalline gels of lignin-graft PMMA doped with GO and azobenzene. Liquid Crystals, 2020, 47, 1170-1179.	2.2	6
32	Multifunctional Fluoroethylene Carbonate for Improving High-Temperature Performance of LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ SiO _{<i>x</i>} @Graphite Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 9989-10000.	5.1	19
33	Hyperbranched PCL/PS Copolymer-Based Solid Polymer Electrolytes Enable Long Cycle Life of Lithium Metal Batteries. Journal of the Electrochemical Society, 2020, 167, 110532.	2.9	21
34	Self-Healing Double-Cross-Linked Supramolecular Binders of a Polyacrylamide-Grafted Soy Protein Isolate for Li–S Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 12799-12808.	6.7	33
35	Low-Cost and Environmentally Friendly Biopolymer Binders for Li–S Batteries. Macromolecules, 2020, 53, 8539-8547.	4.8	25
36	Effect of Pd and Au on Hydrogen Abstraction and C–C Cleavage in Photoconversion of Glycerol: Beyond Charge Separation. Journal of Physical Chemistry C, 2020, 124, 20320-20327.	3.1	6

#	Article	IF	CITATIONS
37	500 Wh kg ^{â~'1} Class Li Metal Battery Enabled by a Selfâ€Organized Core–Shell Composite Anode. Advanced Materials, 2020, 32, e2004793.	21.0	86
38	Ionic-liquid induced enhanced performance of perovskite light-emitting diodes. Journal Physics D: Applied Physics, 2020, 53, 384002.	2.8	5
39	Exploring porous zeolitic imidazolate frame work-8 (ZIF-8) as an efficient filler for high-performance poly(ethyleneoxide)-based solid polymer electrolytes. Nano Research, 2020, 13, 2259-2267.	10.4	82
40	Water-Based Dual-Cross-Linked Polymer Binders for High-Energy-Density Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 29316-29323.	8.0	9
41	Lithiophilic Zn Sites in Porous CuZn Alloy Induced Uniform Li Nucleation and Dendrite-free Li Metal Deposition. Nano Letters, 2020, 20, 2724-2732.	9.1	134
42	New Lithium Salt Forms Interphases Suppressing Both Li Dendrite and Polysulfide Shuttling. Advanced Energy Materials, 2020, 10, 1903937.	19.5	58
43	Artificial solid electrolyte interphase modified porous SiO composite as anode material for lithium ion batteries. Solid State Ionics, 2020, 347, 115272.	2.7	10
44	Hollow nanotubular clay composited comb-like methoxy poly(ethylene glycol) acrylate polymer as solid polymer electrolyte for lithium metal batteries. Electrochimica Acta, 2020, 340, 135995.	5.2	39
45	Mechanism Study of Unsaturated Tripropargyl Phosphate as an Efficient Electrolyte Additive Forming Multifunctional Interphases in Lithium Ion and Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2020, 12, 10443-10451.	8.0	47
46	Self-Regulated Phenomenon of Inorganic Artificial Solid Electrolyte Interphase for Lithium Metal Batteries. Nano Letters, 2020, 20, 4029-4037.	9.1	78
47	Transition metal oxides as lithium-free cathodes for solid-state lithium metal batteries. Nano Energy, 2020, 74, 104867.	16.0	25
48	An ultrahigh-areal-capacity SiOx negative electrode for lithium ion batteries. Journal of Power Sources, 2020, 464, 228244.	7.8	21
49	Green Design of Si/SiO ₂ /C Composites as High-Performance Anodes for Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 3884-3892.	5.1	43
50	Synthesis of silicon anode binders with ultra-high content of catechol groups and the effect of molecular weight on battery performance. Journal of Power Sources, 2020, 463, 228188.	7.8	30
51	Carbonyl-coordinating polymers for high-voltage solid-state lithium batteries: Solid polymer electrolytes. MRS Energy & Sustainability, 2020, 7, 1.	3.0	27
52	Water-based phytic acid-crosslinked supramolecular binders for lithium-sulfur batteries. Chemical Engineering Journal, 2020, 395, 124981.	12.7	49
53	Effects of Co doping sites on the electrochemical performance of LiNi0.5Mn1.5O4 as a cathode material. Ionics, 2020, 26, 3777-3783.	2.4	9
54	Exploring synergetic effects of vinylene carbonate and 1,3-propane sultone on LiNi0.6Mn0.2Co0.2O2/graphite cells with excellent high-temperature performance. Journal of Power Sources, 2019, 437, 226929.	7.8	21

#	Article	IF	CITATIONS
55	Freestanding Lamellar Porous Carbon Stacks for Lowâ€Temperatureâ€Foldable Supercapacitors. Small, 2019, 15, e1902071.	10.0	39
56	Trap-Assisted Charge Injection into Large Bandgap Polymer Semiconductors. Materials, 2019, 12, 2427.	2.9	3
57	Novel multi-block conductive binder with polybutadiene for Si anodes in lithium-ion batteries. Electrochimica Acta, 2019, 315, 58-66.	5.2	22
58	One-pot synthesis of crosslinked polymer electrolyte beyond 5V oxidation potential for all-solid-state lithium battery. Journal of Power Sources, 2019, 431, 1-7.	7.8	26
59	Film-forming electrolyte additives for rechargeable lithium-ion batteries: progress and outlook. Journal of Materials Chemistry A, 2019, 7, 8700-8722.	10.3	135
60	Exploiting Pulping Waste as an Ecofriendly Multifunctional Binder for Lithium Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 8413-8418.	6.7	21
61	Lignin-Derived Nitrogen-Doped Porous Carbon as a High-Rate Anode Material for Sodium Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A423-A428.	2.9	24
62	Nitrogen, Oxygen and Cobalt multiple-doped graphitized mesoporous carbon as a cost-effective carbon host with high sulfur content for lithium-sulfur batteries. Journal of Alloys and Compounds, 2019, 787, 1356-1364.	5.5	11
63	UV-cured polymer electrolyte for LiNi0.85Co0.05Al0.1O2//Li solid state battery working at ambient temperature. Energy Storage Materials, 2019, 22, 337-345.	18.0	82
64	Overcharge Investigations of LiCoO ₂ /Graphite Lithium Ion Batteries with Different Electrolytes. ACS Applied Energy Materials, 2019, 2, 8615-8624.	5.1	14
65	A robust aqueous-processable polymer binder for long-life, high-performance lithium sulfur battery. Energy Storage Materials, 2019, 21, 61-68.	18.0	58
66	How electrolyte additives work in Li-ion batteries. Energy Storage Materials, 2019, 20, 208-215.	18.0	78
67	Lignin derived Si@C composite as a high performance anode material for lithium ion batteries. Solid State Ionics, 2018, 319, 77-82.	2.7	29
68	A facile solvent-free method for NaBH 4 and Na 2 B 12 H 12 synthesis. Inorganica Chimica Acta, 2018, 474, 16-21.	2.4	4
69	Synthesis of triblock copolymer polydopamine-polyacrylic-polyoxyethylene with excellent performance as a binder for silicon anode lithium-ion batteries. RSC Advances, 2018, 8, 4604-4609.	3.6	31
70	High voltage, solvent-free solid polymer electrolyte based on a star-comb PDLLA–PEG copolymer for lithium ion batteries. RSC Advances, 2018, 8, 6373-6380.	3.6	30
71	Multiphase surface growth of hydrophobic ZIF-8 on melamine sponge for excellent oil/water separation and effective catalysis in a Knoevenagel reaction. Journal of Materials Chemistry A, 2018, 6, 3258-3263.	10.3	202
72	Flexible polyimides through one-pot synthesis as water-soluble binders for silicon anodes in lithium ion batteries. Journal of Power Sources, 2018, 379, 26-32.	7.8	69

#	Article	IF	CITATIONS
73	Polyethylenimine and dithiocarbamate decorated melamine sponges for fast copper (II) ions removal from aqueous solution. Applied Surface Science, 2018, 445, 471-477.	6.1	40
74	In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries. Journal of Power Sources, 2018, 387, 72-80.	7.8	95
75	Tuning protein adsorption on charged polyelectrolyte brushes via salinity adjustment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 539, 37-45.	4.7	19
76	Introducing catalyst in alkaline membrane for improved performance direct borohydride fuel cells. Journal of Power Sources, 2018, 374, 113-120.	7.8	17
77	Magnesio-mechanochemical reduced SiO for high-performance lithium ion batteries. Journal of Power Sources, 2018, 407, 112-122.	7.8	36
78	Clycinamide modified polyacrylic acid as high-performance binder for silicon anodes in lithium-ion batteries. Journal of Power Sources, 2018, 406, 102-109.	7.8	66
79	Aqueous-processable polymer binder with strong mechanical and polysulfide-trapping properties for high performance of lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 18660-18668.	10.3	51
80	Novel Lignin-Derived Water-Soluble Binder for Micro Silicon Anode in Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 12621-12629.	6.7	68
81	A large-size, bipolar-stacked and high-safety solid-state lithium battery with integrated electrolyte and cathode. Journal of Power Sources, 2018, 394, 57-66.	7.8	65
82	Spontaneous repairing liquid metal/Si nanocomposite as a smart conductive-additive-free anode for lithium-ion battery. Nano Energy, 2018, 50, 359-366.	16.0	89
83	Robust polymer nanofilms with bioengineering and environmental applications <i>via</i> facile and highly efficient covalent layer-by-layer assembly. Journal of Materials Chemistry B, 2018, 6, 3742-3750.	5.8	18
84	Electrochromic Metal Oxides: Recent Progress and Prospect. Advanced Electronic Materials, 2018, 4, 1800185.	5.1	195
85	Na3NH2B12H12 as high performance solid electrolyte for all-solid-state Na-ion batteries. Journal of Power Sources, 2018, 396, 574-579.	7.8	32
86	A Quadrupleâ€Hydrogenâ€Bonded Supramolecular Binder for Highâ€Performance Silicon Anodes in Lithiumâ€Ion Batteries. Small, 2018, 14, e1801189.	10.0	171
87	Superior lithium ion conduction of polymer electrolyte with comb-like structure <i>via</i> solvent-free copolymerization for bipolar all-solid-state lithium battery. Journal of Materials Chemistry A, 2018, 6, 13438-13447.	10.3	80
88	Simple fabrication of multi-functional melamine sponges. Materials Letters, 2017, 190, 119-122.	2.6	32
89	Tin nanoparticles embedded in porous N-doped graphene-like carbon network as high-performance anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 699, 730-737.	5.5	36
90	Thermoresponsive Melamine Sponges with Switchable Wettability by Interface-Initiated Atom Transfer Radical Polymerization for Oil/Water Separation. ACS Applied Materials & Interfaces, 2017, 9, 8967-8974.	8.0	138

#	Article	IF	CITATIONS
91	Three-dimensional porous graphene-encapsulated CNT@SnO2 composite for high-performance lithium and sodium storage. Electrochimica Acta, 2017, 230, 212-221.	5.2	94
92	Three-dimensional porous carbon-coated graphene composite as high-stable and long-life anode for sodium-ion batteries. Chemical Engineering Journal, 2017, 316, 645-654.	12.7	49
93	Selfâ€Healing Gelatin Hydrogels Cross‣inked by Combining Multiple Hydrogen Bonding and Ionic Coordination. Macromolecular Rapid Communications, 2017, 38, 1700018.	3.9	74
94	Surface modification of melamine sponges for pH-responsive oil absorption and desorption. Applied Surface Science, 2017, 416, 798-804.	6.1	56
95	Na3V2(PO4)3/C nanofiber bifunction as anode and cathode materials for sodium-ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 2985-2995.	2.5	30
96	Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)â€lon Batteries. Advanced Science, 2017, 4, 1700146.	11.2	390
97	Facile synthesis of anhydrous Li 2 B 12 H 12 with high purity by solvent-free method. Inorganica Chimica Acta, 2017, 464, 147-151.	2.4	8
98	Ionic Liquid Mediated Synthesis of Lath Shaped <scp>CuO</scp> Microâ€Assembles as Extremely Stable Anode Material for Lithiumâ€Ion Batteries. Chinese Journal of Chemistry, 2017, 35, 1299-1304.	4.9	3
99	Dynamic Supramolecular Hydrogels: Regulating Hydrogel Properties through Self-Complementary Quadruple Hydrogen Bonds and Thermo-Switch. ACS Macro Letters, 2017, 6, 641-646.	4.8	90
100	Fabrication of Anion-Exchange Polymer Layered Graphene–Melamine Electrodes for Membrane Capacitive Deionization. ACS Sustainable Chemistry and Engineering, 2017, 5, 325-333.	6.7	41
101	A Triblock Copolymer Design Leads to Robust Hybrid Hydrogels for High-Performance Flexible Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 36301-36310.	8.0	34
102	Transportation and release of Janus micromotors by two-stage rocket hydrogel. Journal of Materials Chemistry A, 2017, 5, 18442-18447.	10.3	14
103	Ultrahigh-Capacity Organic Anode with High-Rate Capability and Long Cycle Life for Lithium-Ion Batteries. ACS Energy Letters, 2017, 2, 2140-2148.	17.4	124
104	Quantum Dots: Stabilization of Black Phosphorous Quantum Dots in PMMA Nanofiber Film and Broadband Nonlinear Optics and Ultrafast Photonics Application (Adv. Funct. Mater. 32/2017). Advanced Functional Materials, 2017, 27, .	14.9	1
105	Core/shell nanostructured Na 3 V 2 (PO 4) 3 /C/TiO 2 composite nanofibers as a stable anode for sodium-ion batteries. Journal of Power Sources, 2017, 362, 147-159.	7.8	54
106	Stabilization of Black Phosphorous Quantum Dots in PMMA Nanofiber Film and Broadband Nonlinear Optics and Ultrafast Photonics Application. Advanced Functional Materials, 2017, 27, 1702437.	14.9	136
107	Graphene/cyclodextrin-based nanocomposite hydrogel with enhanced strength and thermo-responsive ability. Carbohydrate Polymers, 2017, 174, 804-811.	10.2	21
108	Direct Preparation of Hollow Nanospheres with Kraft Lignin: A Facile Strategy for Effective Utilization of Biomass Waste. BioResources, 2016, 11, .	1.0	17

#	Article	IF	CITATIONS
109	Aggregation-induced emission: the origin of lignin fluorescence. Polymer Chemistry, 2016, 7, 3502-3508.	3.9	72
110	Probing the interactions between lignin and inorganic oxides using atomic force microscopy. Applied Surface Science, 2016, 390, 617-622.	6.1	29
111	PVA/Carbon Dot Nanocomposite Hydrogels for Simple Introduction of Ag Nanoparticles with Enhanced Antibacterial Activity. Macromolecular Materials and Engineering, 2016, 301, 1352-1362.	3.6	60
112	Oneâ€Pot Fabrication of a Novel Agarâ€Polyacrylamide/Graphene Oxide Nanocomposite Double Network Hydrogel with High Mechanical Properties. Advanced Engineering Materials, 2016, 18, 1799-1807.	3.5	55
113	Pickering emulsion-based fabrication of epoxy and amine microcapsules for dual core self-healing coating. Composites Science and Technology, 2016, 133, 51-59.	7.8	99
114	Preparation of renewable lignin-derived nitrogen-doped carbon nanospheres as anodes for lithium-ion batteries. RSC Advances, 2016, 6, 77143-77150.	3.6	42
115	An Injectable Hydrogel with Excellent Selfâ€Healing Property Based on Quadruple Hydrogen Bonding. Macromolecular Chemistry and Physics, 2016, 217, 2172-2181.	2.2	48
116	Conductivity Enhancement of Poly(3,4-ethylenedioxythiophene)/Lignosulfonate Acid Complexes via Pickering Emulsion Polymerization. ACS Sustainable Chemistry and Engineering, 2016, 4, 7193-7199.	6.7	19
117	Ambient-temperature fabrication of melamine-based sponges coated with hydrophobic lignin shells by surface dip adsorbing for oil/water separation. RSC Advances, 2016, 6, 106928-106934.	3.6	31
118	Hollow lignin azo colloids encapsulated avermectin with high anti-photolysis and controlled release performance. Industrial Crops and Products, 2016, 87, 191-197.	5.2	88
119	Self-assembly of kraft lignin into nanospheres in dioxane-water mixtures. Holzforschung, 2016, 70, 725-731.	1.9	52
120	Preparation of Nanocapsules via the Self-Assembly of Kraft Lignin: A Totally Green Process with Renewable Resources. ACS Sustainable Chemistry and Engineering, 2016, 4, 1946-1953.	6.7	115
121	Fabrication of Lignosulfonate Vesicular Reverse Micelles to Immobilize Horseradish Peroxidase. Industrial & Engineering Chemistry Research, 2016, 55, 2731-2737.	3.7	20
122	Reduction of lignin color via one-step UV irradiation. Green Chemistry, 2016, 18, 695-699.	9.0	176
123	Slow relaxation mode of sodium lignosulfonate in saline solutions. Holzforschung, 2015, 69, 17-23.	1.9	9
124	Preparation of Photoresponsive Azo Polymers Based on Lignin, a Renewable Biomass Resource. ACS Sustainable Chemistry and Engineering, 2015, 3, 1111-1116.	6.7	28
125	Layer-by-Layer Self-Assembled Films of a Lignin-based Polymer through Hydrogen Bonding. ACS Sustainable Chemistry and Engineering, 2015, 3, 1215-1220.	6.7	9
126	Light scattering characterization of lignosulfonate structure in saline solutions. Holzforschung, 2015, 69, 377-383.	1.9	15

#	Article	IF	CITATIONS
127	Preparation of water-dispersive poly(3,4-ethylenedioxythiophene) (PEDOT) conductive nanoparticles in lignosulfonic acid solution. Holzforschung, 2015, 69, 539-545.	1.9	9
128	Lignin Reverse Micelles for UV-Absorbing and High Mechanical Performance Thermoplastics. Industrial & Engineering Chemistry Research, 2015, 54, 12025-12030.	3.7	73
129	Effect of Temperature on Polyelectrolyte Expansion of Lignosulfonate. BioResources, 2014, 10, .	1.0	8
130	H- and J-Aggregation of Fluorene-Based Chromophores. Journal of Physical Chemistry B, 2014, 118, 14536-14545.	2.6	147
131	Macroporous antibacterial hydrogels with tunable pore structures fabricated by using Pickering high internal phase emulsions as templates. Polymer Chemistry, 2014, 5, 4227-4234.	3.9	51
132	Aggregation of sodium lignosulfonate above a critical temperature. Holzforschung, 2014, 68, 641-647.	1.9	21
133	Formation of uniform colloidal spheres from lignin, a renewable resource recovered from pulping spent liquor. Green Chemistry, 2014, 16, 2156.	9.0	334
134	Reaction-Free Lignin Whitening via a Self-Assembly of Acetylated Lignin. Industrial & Engineering Chemistry Research, 2014, 53, 10024-10028.	3.7	59
135	Fabrication of degradable polymer microspheres via pH-responsive chitosan-based Pickering emulsion photopolymerization. RSC Advances, 2014, 4, 29344-29351.	3.6	38
136	Multifunctional foams derived from poly(melamine formaldehyde) as recyclable oil absorbents. Journal of Materials Chemistry A, 2014, 2, 9994-9999.	10.3	134
137	Highly Regenerable Mussel-Inspired Fe ₃ O ₄ @Polydopamine-Ag Core–Shell Microspheres as Catalyst and Adsorbent for Methylene Blue Removal. ACS Applied Materials & Interfaces, 2014, 6, 8845-8852.	8.0	385
138	Renewable Lignin-Based Xerogels with Self-Cleaning Properties and Superhydrophobicity. ACS Sustainable Chemistry and Engineering, 2014, 2, 1729-1733.	6.7	103
139	Effect of Temperature on a Lignin-based Polymer with Two Types of Microstructures. BioResources, 2014, 9, .	1.0	0
140	Three-arm star compounds composed of 1,3,5-tri(azobenzeneethynyl)benzene cores and flexible PEO arms: synthesis, optical functions, hybrid Ormosil gel glasses. Journal of Materials Chemistry C, 2013, 1, 1791.	5.5	23
141	Determination of absolute molecular weight of sodium lignosulfonates (NaLS) by laser light scattering (LLS). Holzforschung, 2013, 67, 265-271.	1.9	14
142	Physicochemical properties of sodium lignosulfonates (NaLS) modified by laccase. Holzforschung, 2012, 66, 825-832.	1.9	32
143	Effect of calcium lignosulfonate on the hydration of the tricalcium aluminate–anhydrite system. Cement and Concrete Research, 2012, 42, 1549-1554.	11.0	27
144	Novel Method for the Determination of the Methoxyl Content in Lignin by Headspace Gas Chromatography. Journal of Agricultural and Food Chemistry, 2012, 60, 5307-5310.	5.2	57

#	Article	IF	CITATIONS
145	Effect of Molecular Weight of Polycarboxylate-type Superplasticizer on the Rheological Properties of Cement Pastes. Polymers and Polymer Composites, 2012, 20, 725-736.	1.9	11
146	Effect of molecular weight of sulphonated acetone-formaldehyde condensate on its adsorption and dispersion properties in cementitious system. Cement and Concrete Research, 2012, 42, 1043-1048.	11.0	42
147	Investigation of Aggregation and Assembly of Alkali Lignin Using Iodine as a Probe. Biomacromolecules, 2011, 12, 1116-1125.	5.4	162
148	Adsorption Characteristics of Lignosulfonates in Salt-Free and Salt-Added Aqueous Solutions. Biomacromolecules, 2011, 12, 3313-3320.	5.4	64
149	Effect of Molecular Weight on the Adsorption Characteristics of Lignosulfonates. Journal of Physical Chemistry B, 2011, 115, 14866-14873.	2.6	24
150	Lignosulfonate Separation Using Preparative Column Chromatography. Industrial & Engineering Chemistry Research, 2011, 50, 10792-10799.	3.7	23
151	Effect of Side Chains and Sulfonic Groups on the Performance of Polycarboxylate-Type Superplasticizers in Concentrated Cement Suspensions. Journal of Dispersion Science and Technology, 2011, 32, 203-212.	2.4	51
152	Synthesis and Evaluation of Polycarboxylate-Type Superplasticizers with Different Carboxylic Contents Used in a Cement System. International Journal of Polymeric Materials and Polymeric Biomaterials, 2011, 60, 923-938.	3.4	18
153	Isolation of lignosulfonate with low polydispersity index. Chinese Chemical Letters, 2010, 21, 1479-1481.	9.0	19
154	Influence of pH on the behavior of lignosulfonate macromolecules in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 371, 50-58.	4.7	118
155	pH EFFECT ON ELECTROSTATIC LAYER-BY-LAYER SELF-ASSEMBLY OF SODIUM LIGNOSULFONATE. Acta Polymerica Sinica, 2010, 010, 699-704.	0.0	4
156	Effect of straight-chain alcohols on the physicochemical properties of calcium lignosulfonate. Journal of Colloid and Interface Science, 2009, 338, 151-155.	9.4	40
157	SYNTHESIS, CHARACTERIZATION AND SELF-ASSEMBLY OF AN AZOBENZENE-CONTAINING AMPHIPHILIC ABA TRIBLOCK COPOLYMER. Acta Polymerica Sinica, 2009, 009, 128-133.	0.0	2
158	Sequentially adsorbed electrostatic multilayers of polyaniline and azo polyelectrolytes. Polymer, 2008, 49, 5504-5512.	3.8	21
159	Effect of dipping solution pH values on electrostatic layer-by-layer self-assembly of side-chain azo polyelectrolyte. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2008, 3, 218-223.	0.4	2
160	Hybrid Colloids Composed of Two Amphiphilic Azo Polymers:  Fabrication, Characterization, and Photoresponsive Properties. Macromolecules, 2007, 40, 6669-6678.	4.8	37
161	Formation of Photoresponsive Uniform Colloidal Spheres from an Amphiphilic Azobenzene-Containing Random Copolymer. Macromolecules, 2006, 39, 1108-1115.	4.8	110
162	Colloidal Sphere Formation, H-Aggregation, and Photoresponsive Properties of an Amphiphilic Random Copolymer Bearing Branched Azo Side Chains. Macromolecules, 2006, 39, 6590-6598.	4.8	78

#	Article	IF	CITATIONS
163	Amphiphilic Azo Polymer Spheres, Colloidal Monolayers, and Photoinduced Chromophore Orientation. Langmuir, 2005, 21, 6567-6571.	3.5	48