Robert A Weinberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2823597/publications.pdf

Version: 2024-02-01

133 173,174 95 136 papers citations h-index g-index

139 139 139 139 138659

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Hallmarks of Cancer: The Next Generation. Cell, 2011, 144, 646-674.	28.9	52,242
2	The Hallmarks of Cancer. Cell, 2000, 100, 57-70.	28.9	24,832
3	The basics of epithelial-mesenchymal transition. Journal of Clinical Investigation, 2009, 119, 1420-1428.	8.2	8,252
4	The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells. Cell, 2008, 133, 704-715.	28.9	7,695
5	A Perspective on Cancer Cell Metastasis. Science, 2011, 331, 1559-1564.	12.6	3,985
6	Understanding the tumor immune microenvironment (TIME) for effective therapy. Nature Medicine, 2018, 24, 541-550.	30.7	3,421
7	Twist, a Master Regulator of Morphogenesis, Plays an Essential Role in Tumor Metastasis. Cell, 2004, 117, 927-939.	28.9	3,405
8	Stromal Fibroblasts Present in Invasive Human Breast Carcinomas Promote Tumor Growth and Angiogenesis through Elevated SDF-1/CXCL12 Secretion. Cell, 2005, 121, 335-348.	28.9	3,273
9	Tumor Metastasis: Molecular Insights and Evolving Paradigms. Cell, 2011, 147, 275-292.	28.9	3,143
10	Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature Reviews Cancer, 2009, 9, 265-273.	28.4	2,951
11	Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature, 1983, 304, 596-602.	27.8	2,901
12	Epithelial-Mesenchymal Transition: At the Crossroads of Development and Tumor Metastasis. Developmental Cell, 2008, 14, 818-829.	7.0	2,653
13	Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 2007, 449, 682-688.	27.8	2,382
14	New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nature Reviews Molecular Cell Biology, 2019, 20, 69-84.	37.0	2,319
15	Emerging Biological Principles of Metastasis. Cell, 2017, 168, 670-691.	28.9	2,208
16	Identification of Selective Inhibitors of Cancer Stem Cells by High-Throughput Screening. Cell, 2009, 138, 645-659.	28.9	2,200
17	Creation of human tumour cells with defined genetic elements. Nature, 1999, 400, 464-468.	27.8	2,148
18	EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nature Reviews Clinical Oncology, 2017, 14, 611-629.	27.6	1,865

#	Article	IF	Citations
19	Effects of an Rb mutation in the mouse. Nature, 1992, 359, 295-300.	27.8	1,730
20	Mechanism of activation of a human oncogene. Nature, 1982, 300, 143-149.	27.8	1,426
21	Loss of E-Cadherin Promotes Metastasis via Multiple Downstream Transcriptional Pathways. Cancer Research, 2008, 68, 3645-3654.	0.9	1,298
22	Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature, 1993, 363, 45-51.	27.8	1,260
23	Guidelines and definitions for research on epithelial–mesenchymal transition. Nature Reviews Molecular Cell Biology, 2020, 21, 341-352.	37.0	1,195
24	The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature, 1984, 312, 513-516.	27.8	1,107
25	The epigenetics of epithelial-mesenchymal plasticity in cancer. Nature Medicine, 2013, 19, 1438-1449.	30.7	1,030
26	Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7950-7955.	7.1	1,024
27	Inhibition of telomerase limits the growth of human cancer cells. Nature Medicine, 1999, 5, 1164-1170.	30.7	983
28	Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15449-15454.	7.1	909
29	Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature, 1982, 297, 474-478.	27.8	894
30	Epithelial–Mesenchymal Plasticity: A Central Regulator of Cancer Progression. Trends in Cell Biology, 2015, 25, 675-686.	7.9	832
31	Tackling the cancer stem cells — what challenges do they pose?. Nature Reviews Drug Discovery, 2014, 13, 497-512.	46.4	831
32	Slug and Sox9 Cooperatively Determine the Mammary Stem Cell State. Cell, 2012, 148, 1015-1028.	28.9	830
33	Paracrine and Autocrine Signals Induce and Maintain Mesenchymal and Stem Cell States in the Breast. Cell, 2011, 145, 926-940.	28.9	788
34	Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell, 1982, 29, 161-169.	28.9	787
35	Cancer stem cells and epithelial–mesenchymal transition: Concepts and molecular links. Seminars in Cancer Biology, 2012, 22, 396-403.	9.6	781
36	Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature, 1981, 290, 261-264.	27.8	776

#	Article	IF	CITATIONS
37	Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature, 1984, 312, 649-651.	27.8	770
38	Poised Chromatin at the ZEB1 Promoter Enables Breast Cancer Cell Plasticity and Enhances Tumorigenicity. Cell, 2013, 154, 61-74.	28.9	753
39	Metastasis genes: A progression puzzle. Nature, 2002, 418, 823-823.	27.8	733
40	The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nature Cell Biology, 2014, 16, 717-727.	10.3	732
41	Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nature Genetics, 1994, 7, 353-361.	21.4	731
42	Phenotype of mice lacking functional Deleted in colorectal cancer (Dec) gene. Nature, 1997, 386, 796-804.	27.8	717
43	Autocrine TGF- $\hat{1}^2$ and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20009-20014.	7.1	682
44	EMT, cell plasticity and metastasis. Cancer and Metastasis Reviews, 2016, 35, 645-654.	5.9	672
45	Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature, 1996, 384, 470-474.	27.8	668
46	Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature, 2015, 525, 256-260.	27.8	604
47	Enumeration of the Simian Virus 40 Early Region Elements Necessary for Human Cell Transformation. Molecular and Cellular Biology, 2002, 22, 2111-2123.	2.3	575
48	Epithelial-to-mesenchymal transition in cancer: complexity and opportunities. Frontiers of Medicine, 2018, 12, 361-373.	3.4	467
49	Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science, 2015, 348, 340-343.	12.6	463
50	Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature, 2020, 585, 603-608.	27.8	420
51	The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nature Genetics, 2005, 37, 1047-1054.	21.4	404
52	Systemic Endocrine Instigation of Indolent Tumor Growth Requires Osteopontin. Cell, 2008, 133, 994-1005.	28.9	395
53	Telomerase activity is restored in human cells by ectopic expression of hTERT (hEST2), the catalytic subunit of telomerase. Oncogene, 1998, 16, 1217-1222.	5.9	383
54	A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nature Cell Biology, 2014, 16, 1105-1117.	10.3	380

#	Article	IF	CITATIONS
55	Neutrophils Suppress Intraluminal NK Cell–Mediated Tumor Cell Clearance and Enhance Extravasation of Disseminated Carcinoma Cells. Cancer Discovery, 2016, 6, 630-649.	9.4	369
56	Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7353-7362.	7.1	366
57	Expression of TERT in early premalignant lesions and a subset of cells in normal tissues. Nature Genetics, 1998, 19, 182-186.	21.4	364
58	Integrin \hat{l}^2 ₁ -focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10290-10295.	7.1	329
59	Association between GTPase activators for Rho and Ras families. Nature, 1992, 359, 153-154.	27.8	325
60	The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy. Science Translational Medicine, 2018, 10, .	12.4	301
61	Cancer-Stimulated Mesenchymal Stem Cells Create a Carcinoma Stem Cell Niche via Prostaglandin E2 Signaling. Cancer Discovery, 2012, 2, 840-855.	9.4	299
62	Epithelial-to-Mesenchymal Transition Contributes to Immunosuppression in Breast Carcinomas. Cancer Research, 2017, 77, 3982-3989.	0.9	294
63	Transformation of Different Human Breast Epithelial Cell Types Leads to Distinct Tumor Phenotypes. Cancer Cell, 2007, 12, 160-170.	16.8	281
64	Cell-cycle control and its watchman. Nature, 1996, 381, 643-644.	27.8	278
65	Protein Kinase C \hat{l}_{\pm} Is a Central Signaling Node and Therapeutic Target for Breast Cancer Stem Cells. Cancer Cell, 2013, 24, 347-364.	16.8	277
66	Integrin- \hat{l}^24 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2337-E2346.	7.1	273
67	Linking EMT programmes to normal and neoplastic epithelial stem cells. Nature Reviews Cancer, 2021, 21, 325-338.	28.4	273
68	Activation of PKA leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability. Science, 2016, 351, aad3680.	12.6	271
69	Upholding a role for EMT in breast cancer metastasis. Nature, 2017, 547, E1-E3.	27.8	266
70	Coming Full Circle—From Endless Complexity to Simplicity and Back Again. Cell, 2014, 157, 267-271.	28.9	225
71	EMT and Cancer: More Than Meets the Eye. Developmental Cell, 2019, 49, 313-316.	7.0	218
72	Characterization of a human colon/lung carcinoma oncogene. Nature, 1983, 302, 79-81.	27.8	211

#	Article	IF	Citations
73	Upholding a role for EMT in pancreatic cancer metastasis. Nature, 2017, 547, E7-E8.	27.8	203
74	The Spemann organizer gene, <i>Goosecoid</i> , promotes tumor metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18969-18974.	7.1	201
75	The Outgrowth of Micrometastases Is Enabled by the Formation of Filopodium-like Protrusions. Cancer Discovery, 2012, 2, 706-721.	9.4	195
76	Phenotypic plasticity and epithelialâ€mesenchymal transitions in cancer and normal stem cells?. International Journal of Cancer, 2011, 129, 2310-2314.	5.1	191
77	Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. Journal of Experimental Medicine, 2017, 214, 2243-2255.	8.5	187
78	Dihydropyrimidine Accumulation Is Required for the Epithelial-Mesenchymal Transition. Cell, 2014, 158, 1094-1109.	28.9	186
79	An Integrin-Linked Machinery of Cytoskeletal Regulation that Enables Experimental Tumor Initiation and Metastatic Colonization. Cancer Cell, 2013, 24, 481-498.	16.8	174
80	Mechanisms of malignant progression. Carcinogenesis, 2008, 29, 1092-1095.	2.8	152
81	Heterogeneity of stromal fibroblasts in tumor. Cancer Biology and Therapy, 2007, 6, 618-619.	3.4	140
82	How Does Multistep Tumorigenesis Really Proceed?. Cancer Discovery, 2015, 5, 22-24.	9.4	134
83	Emerging Mechanisms by which EMT Programs Control Stemness. Trends in Cancer, 2020, 6, 775-780.	7.4	133
84	LACTB is a tumour suppressor that modulates lipid metabolism and cell state. Nature, 2017, 543, 681-686.	27.8	131
85	Inflammation Triggers Zeb1-Dependent Escape from Tumor Latency. Cancer Research, 2016, 76, 6778-6784.	0.9	125
86	The Molecular Basis of Oncogenes and Tumor Suppressor Genes. Annals of the New York Academy of Sciences, 1995, 758, 331-338.	3.8	122
87	IL- $1\hat{l}^2$ inflammatory response driven by primary breast cancer prevents metastasis-initiating cell colonization. Nature Cell Biology, 2018, 20, 1084-1097.	10.3	122
88	Oncogenes and tumor suppressor genes. Ca-A Cancer Journal for Clinicians, 1994, 44, 160-170.	329.8	119
89	Metastatic colonization: Settlement, adaptation and propagation of tumor cells in a foreign tissue environment. Seminars in Cancer Biology, 2011, 21, 99-106.	9.6	112
90	CELL CYCLE: The Expanding Role of Cell Cycle Regulators. Science, 1998, 280, 1035-1036.	12.6	108

#	Article	IF	Citations
91	miR-31: A crucial overseer of tumor metastasis and other emerging roles. Cell Cycle, 2010, 9, 2124-2129.	2.6	106
92	Concurrent Suppression of Integrin $\hat{i}\pm 5$, Radixin, and RhoA Phenocopies the Effects of miR-31 on Metastasis. Cancer Research, 2010, 70, 5147-5154.	0.9	104
93	EMT programs promote basal mammary stem cell and tumor-initiating cell stemness by inducing primary ciliogenesis and Hedgehog signaling. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10532-E10539.	7.1	104
94	Concomitant suppression of three target genes can explain the impact of a microRNA on metastasis. Genes and Development, 2009, 23, 2592-2597.	5.9	103
95	In vitro synthesis of infectious DNA of murine leukaemia virus. Nature, 1977, 269, 122-126.	27.8	100
96	Unique transforming gene in carcinogen-transformed mouse cells. Nature, 1981, 289, 607-609.	27.8	96
97	Roles for microRNAs in the regulation of cell adhesion molecules. Journal of Cell Science, 2011, 124, 999-1006.	2.0	95
98	Immuno-PET identifies the myeloid compartment as a key contributor to the outcome of the antitumor response under PD-1 blockade. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16971-16980.	7.1	92
99	An alternative splicing switch in FLNB promotes the mesenchymal cell state in human breast cancer. ELife, 2018, 7, .	6.0	91
100	Activation of miR-31 function in already-established metastases elicits metastatic regression. Genes and Development, 2011, 25, 646-659.	5.9	89
101	Coevolution in the tumor microenvironment. Nature Genetics, 2008, 40, 494-495.	21.4	83
102	Twisted epithelial–mesenchymal transition blocks senescence. Nature Cell Biology, 2008, 10, 1021-1023.	10.3	79
103	MicroRNAs: Crucial multi-tasking components in the complex circuitry of tumor metastasis. Cell Cycle, 2009, 8, 3506-3512.	2.6	78
104	Direct and Indirect Regulators of Epithelial–Mesenchymal Transition–Mediated Immunosuppression in Breast Carcinomas. Cancer Discovery, 2021, 11, 1286-1305.	9.4	76
105	The Epithelial-Mesenchymal Transition Factor SNAIL Paradoxically Enhances Reprogramming. Stem Cell Reports, 2014, 3, 691-698.	4.8	75
106	Genetically Defined Syngeneic Mouse Models of Ovarian Cancer as Tools for the Discovery of Combination Immunotherapy. Cancer Discovery, 2021, 11, 384-407.	9.4	64
107	A specific role for cyclin D1 in mammary gland development. Journal of Mammary Gland Biology and Neoplasia, 1997, 2, 335-342.	2.7	55
108	Leaving Home Early: Reexamination of the Canonical Models of Tumor Progression. Cancer Cell, 2008, 14, 283-284.	16.8	55

#	Article	IF	Citations
109	Genome-wide CRISPR screen identifies PRC2 and KMT2D-COMPASS as regulators of distinct EMT trajectories that contribute differentially to metastasis. Nature Cell Biology, 2022, 24, 554-564.	10.3	53
110	Targeting the Epithelial-to-Mesenchymal Transition: The Case for Differentiation-Based Therapy. Cold Spring Harbor Symposia on Quantitative Biology, 2016, 81, 11-19.	1.1	51
111	Epithelial-Mesenchymal Transition Induces Podocalyxin to Promote Extravasation via Ezrin Signaling. Cell Reports, 2018, 24, 962-972.	6.4	51
112	Genetically Defined, Syngeneic Organoid Platform for Developing Combination Therapies for Ovarian Cancer. Cancer Discovery, 2021, 11, 362-383.	9.4	50
113	A Lost Generation. Cell, 2006, 126, 9-10.	28.9	33
114	The many faces of tumor dormancy. Apmis, 2008, 116, 548-551.	2.0	32
115	Bumps on the road to immortality. Nature, 1998, 396, 23-24.	27.8	30
116	Poised with purpose: Cell plasticity enhances tumorigenicity. Cell Cycle, 2013, 12, 2713-2714.	2.6	30
117	Alteration of the genomes of tumor cells. Cancer, 1983, 51, 1971-1975.	4.1	27
118	The many faces of tumor dormancy. Apmis, 2008, 116, 548-551.	2.0	21
119	Measuring kinetics and metastatic propensity of CTCs by blood exchange between mice. Nature Communications, 2021, 12, 5680.	12.8	18
120	An EMT–primary cilium–GLIS2 signaling axis regulates mammogenesis and claudin-low breast tumorigenesis. Science Advances, 2021, 7, eabf6063.	10.3	14
121	Assaying microRNA loss-of-function phenotypes in mammalian cells: Emerging tools and their potential therapeutic utility. RNA Biology, 2009, 6, 541-545.	3.1	12
122	Is metastasis predetermined?. Molecular Oncology, 2007, 1, 263-264.	4.6	11
123	Metastasis: objections to the same-gene model. Nature, 2002, 419, 560-560.	27.8	7
124	Metastasis suppression: a role of the Dice(r). Genome Biology, 2010, 11, 141.	9.6	7
125	Syndecan-Mediated Ligation of ECM Proteins Triggers Proliferative Arrest of Disseminated Tumor Cells. Cancer Research, 2019, 79, 5944-5957.	0.9	6
126	Inadvertent Cancer Research. Cancer Biology and Therapy, 2004, 3, 238-239.	3.4	5

#	Article	lF	CITATIONS
127	The SUMO guards for SNAIL. Oncotarget, 2017, 8, 97701-97702.	1.8	5
128	Hunting the elusive oncogene: a stroke of good luck. Nature Cell Biology, 2011, 13, 876-876.	10.3	2
129	Leveraging immunochemotherapy for treating pancreatic cancer. Cell Research, 2021, 31, 1228-1229.	12.0	2
130	Ma et al. reply. Nature, 2008, 455, E9-E9.	27.8	1
131	Bengt Westermark and our current understanding of tumor pathogenesis. Upsala Journal of Medical Sciences, 2012, 117, 81-82.	0.9	1
132	How TP53 (almost) became an oncogene. Journal of Molecular Cell Biology, 2019, 11, 531-533.	3.3	1
133	David M. Livingston (1941–2021). Cancer Cell, 2021, 39, 1560-1561.	16.8	0