
Richard Kumaran Kandasamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2823012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A modular map of Bradykinin-mediated inflammatory signaling network. Journal of Cell Communication and Signaling, 2022, 16, 301-310.	3.4	14
2	Proteogenomics Analysis Reveals Novel Micropeptides in Primary Human Immune Cells. Immuno, 2022, 2, 283-292.	1.5	0
3	Revisiting Regulated Cell Death Responses in Viral Infections. International Journal of Molecular Sciences, 2022, 23, 7023.	4.1	11
4	Comparative Proteomic Analysis Reveals Varying Impact on Immune Responses in Phorbol 12-Myristate-13-Acetate-Mediated THP-1 Monocyte-to-Macrophage Differentiation. Frontiers in Immunology, 2021, 12, 679458.	4.8	22
5	SARS-CoV-2 signaling pathway map: A functional landscape of molecular mechanisms in COVID-19. Journal of Cell Communication and Signaling, 2021, 15, 601-608.	3.4	15
6	Single-cell transcriptome identifies FCGR3B upregulated subtype of alveolar macrophages in patients with critical COVID-19. IScience, 2021, 24, 103030.	4.1	13
7	The Proteomic Landscape of Resting and Activated CD4+ T Cells Reveal Insights into Cell Differentiation and Function. International Journal of Molecular Sciences, 2021, 22, 275.	4.1	9
8	UMP-CMP kinase 2 gene expression in macrophages is dependent on the IRF3-IFNAR signaling axis. PLoS ONE, 2021, 16, e0258989.	2.5	8
9	A comprehensive pathway map of IL-18-mediated signalling. Journal of Cell Communication and Signaling, 2020, 14, 257-266.	3.4	66
10	The long non-coding RNA LUCAT1 is a negative feedback regulator of interferon responses in humans. Nature Communications, 2020, 11, 6348.	12.8	48
11	A widespread role for SLC transmembrane transporters in resistance to cytotoxic drugs. Nature Chemical Biology, 2020, 16, 469-478.	8.0	84
12	Common Nodes of Virus–Host Interaction Revealed Through an Integrated Network Analysis. Frontiers in Immunology, 2019, 10, 2186.	4.8	67
13	Dynamics of Dual Specificity Phosphatases and Their Interplay with Protein Kinases in Immune Signaling. International Journal of Molecular Sciences, 2019, 20, 2086.	4.1	20
14	The TLR4 adaptor TRAM controls the phagocytosis of Gram-negative bacteria by interacting with the Rab11-family interacting protein 2. PLoS Pathogens, 2019, 15, e1007684.	4.7	28
15	Proteogenomic Analysis to Identify Missing Proteins from Haploid Cell Lines. Proteomics, 2018, 18, e1700386.	2.2	13
16	Front Cover: Proteogenomic Analysis to Identify Missing Proteins from Haploid Cell Lines. Proteomics, 2018, 18, 1870061.	2.2	0
17	SLAMF1 is required for TLR4-mediated TRAM-TRIF–dependent signaling in human macrophages. Journal of Cell Biology, 2018, 217, 1411-1429.	5.2	38
18	mTOR Senses Environmental Cues to Shape the Fibroblast-like Synoviocyte Response to Inflammation. Cell Reports, 2018, 23, 2157-2167.	6.4	62

#	Article	IF	CITATIONS
19	Coactivation of TLR2 and TLR8 in Primary Human Monocytes Triggers a Distinct Inflammatory Signaling Response. Frontiers in Physiology, 2018, 9, 618.	2.8	15
20	Hepatitis C virus triggers Golgi fragmentation and autophagy through the immunity-related GTPase M. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3462-E3471.	7.1	103
21	04.05â€The metabolic checkpoint kinase mtor regulates the rheumatoid mesenchymal tissue response to inflammation. , 2017, , .		0
22	A time-resolved molecular map of the macrophage response to VSV infection. Npj Systems Biology and Applications, 2016, 2, 16027.	3.0	42
23	An Inducible Retroviral Expression System for Tandem Affinity Purification Mass-Spectrometry-Based Proteomics Identifies Mixed Lineage Kinase Domain-like Protein (MLKL) as an Heat Shock Protein 90 (HSP90) Client. Molecular and Cellular Proteomics, 2016, 15, 1139-1150.	3.8	23
24	An Inducible Retroviral Expression System for Tandem Affinity Purification Mass-Spectrometry-Based Proteomics Identifies Mixed Lineage Kinase Domain-like Protein (MLKL) as an Heat Shock Protein 90 (HSP90) Client. Molecular and Cellular Proteomics, 2016, 15, 1139-1150.	3.8	9
25	Superoxide Dismutase 1 Protects Hepatocytes from Type I Interferon-Driven Oxidative Damage. Immunity, 2015, 43, 974-986.	14.3	50
26	SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature, 2015, 519, 477-481.	27.8	561
27	The Lipid-Modifying Enzyme SMPDL3B Negatively Regulates Innate Immunity. Cell Reports, 2015, 11, 1919-1928.	6.4	74
28	The methyltransferase Setdb2 mediates virus-induced susceptibility to bacterial superinfection. Nature Immunology, 2015, 16, 67-74.	14.5	120
29	The solute carrier SLC35F2 enables YM155-mediated DNA damage toxicity. Nature Chemical Biology, 2014, 10, 768-773.	8.0	157
30	Toward effective sharing of high-dimensional immunology data. Nature Biotechnology, 2014, 32, 755-759.	17.5	11
31	Protein interaction networks in innate immunity. Trends in Immunology, 2013, 34, 610-619.	6.8	26
32	A proteogenomic approach to map the proteome of an unsequenced pathogen – <i>Leishmania donovani</i> . Proteomics, 2012, 12, 832-844.	2.2	42
33	Viral immune modulators perturb the human molecular network by common and unique strategies. Nature, 2012, 487, 486-490.	27.8	249
34	A Signaling Network of Thyroid-Stimulating Hormone. Journal of Proteomics and Bioinformatics, 2011, 04, .	0.4	11
35	Identification of Novel Phosphorylation Motifs Through an Integrative Computational and Experimental Analysis of the Human Phosphoproteome. Journal of Proteomics and Bioinformatics, 2011, 04, 22-35.	0.4	31
36	Systematic evaluation of alternating CID and ETD fragmentation for phosphorylated peptides. Proteomics, 2011, 11, 2568-2572.	2.2	36

#	Article	IF	CITATIONS
37	A proteogenomic analysis of <i>Anopheles gambiae</i> using high-resolution Fourier transform mass spectrometry. Genome Research, 2011, 21, 1872-1881.	5.5	58
38	Quantitative tissue proteomics of esophageal squamous cell carcinoma for novel biomarker discovery. Cancer Biology and Therapy, 2011, 12, 510-522.	3.4	102
39	Assessment of resolution parameters for CID-based shotgun proteomic experiments on the LTQ-Orbitrap mass spectrometer. Journal of the American Society for Mass Spectrometry, 2010, 21, 1606-1611.	2.8	26
40	Comparative Proteomic Analysis of Candida albicans and Candida glabrata. Clinical Proteomics, 2010, 6, 163-173.	2.1	3
41	Comparative proteomics of human embryonic stem cells and embryonal carcinoma cells. Proteomics, 2010, 10, 1359-1373.	2.2	48
42	The BioPAX community standard for pathway data sharing. Nature Biotechnology, 2010, 28, 935-942.	17.5	613
43	SILAC-based quantitative proteomic approach to identify potential biomarkers from the esophageal squamous cell carcinoma secretome. Cancer Biology and Therapy, 2010, 10, 796-810.	3.4	79
44	Identifying targets of miR-143 using a SILAC-based proteomic approach. Molecular BioSystems, 2010, 6, 1873.	2.9	58
45	NetPath: a public resource of curated signal transduction pathways. Genome Biology, 2010, 11, R3.	9.6	456
46	A Compendium of Potential Biomarkers of Pancreatic Cancer. PLoS Medicine, 2009, 6, e1000046.	8.4	260
47	Human Proteinpedia: a unified discovery resource for proteomics research. Nucleic Acids Research, 2009, 37, D773-D781.	14.5	75
48	PathBuilder—open source software for annotating and developing pathway resources. Bioinformatics, 2009, 25, 2860-2862.	4.1	40
49	Evaluation of Several MS/MS Search Algorithms for Analysis of Spectra Derived from Electron Transfer Dissociation Experiments. Analytical Chemistry, 2009, 81, 7170-7180.	6.5	50
50	Human Proteinpedia enables sharing of human protein data. Nature Biotechnology, 2008, 26, 164-167.	17.5	155
51	Comprehensive Comparison of Collision Induced Dissociation and Electron Transfer Dissociation. Analytical Chemistry, 2008, 80, 4825-4835.	6.5	97
52	Human protein reference database–2006 update. Nucleic Acids Research, 2006, 34, D411-D414.	14.5	536