
Zhengjin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2822967/publications.pdf Version: 2024-02-01

ZHENCUN WANC

#	Article	IF	CITATIONS
1	Topoarchitected polymer networks expand the space of material properties. Nature Communications, 2022, 13, 1622.	12.8	46
2	Fluid-Driven Cracks Tunneling in Cemented Hydrocarbon Wells. Journal of Applied Mechanics, Transactions ASME, 2022, 89, .	2.2	1
3	Toughening Mechanism of Unidirectional Stretchable Composite. Frontiers in Robotics and Al, 2021, 8, 673307.	3.2	5
4	Swell induced stress in a hydrogel coating. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 797-802.	3.4	4
5	Stretchable and fatigue-resistant materials. Materials Today, 2020, 34, 7-16.	14.2	146
6	Cohesive energy measurement of van der Waals heterostructures by the shaft loaded blister test. Extreme Mechanics Letters, 2020, 41, 100987.	4.1	13
7	Polymer-filled macroporous hydrogel for low friction. Extreme Mechanics Letters, 2020, 38, 100742.	4.1	13
8	Polyacrylamide hydrogels. II. elastic dissipater. Journal of the Mechanics and Physics of Solids, 2019, 133, 103737.	4.8	69
9	Stretchable materials of high toughness and low hysteresis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5967-5972.	7.1	253
10	Surface contact behavior of an arbitrarily oriented graded substrate with a spatially varying friction coefficient. International Journal of Mechanical Sciences, 2019, 151, 410-423.	6.7	23
11	Extrusion, slide, and rupture of an elastomeric seal. Journal of the Mechanics and Physics of Solids, 2017, 99, 289-303.	4.8	23
12	Compressive crushing of novel aluminum hexagonal honeycombs with perforations: Experimental and numerical investigations. International Journal of Solids and Structures, 2017, 126-127, 187-195.	2.7	39
13	Wearable and Washable Conductors for Active Textiles. ACS Applied Materials & Interfaces, 2017, 9, 25542-25552.	8.0	118
14	Flaw sensitivity of highly stretchable materials. Extreme Mechanics Letters, 2017, 10, 50-57.	4.1	151
15	A theoretical study of low-velocity impact of geometrically asymmetric sandwich beams. International Journal of Impact Engineering, 2016, 96, 35-49.	5.0	33
16	Crack Tunneling in Cement Sheath of Hydrocarbon Well. Journal of Applied Mechanics, Transactions ASME, 2016, 83, .	2.2	13
17	Indentation of Metal Foam Core Sandwich Beams: Experimental and Theoretical Investigations. Experimental Mechanics, 2016, 56, 771-784.	2.0	23
18	A theoretical study of plastic analysis of fully clamped geometrical asymmetric sandwich beams with a metal foam core. International lournal of Mechanical Sciences, 2015, 99, 98-111.	6.7	18

ZHENGJIN WANG

#	Article	IF	Citations
19	Elastic Leak for a Better Seal. Journal of Applied Mechanics, Transactions ASME, 2015, 82, .	2.2	10
20	Elastic leak of a seal. Extreme Mechanics Letters, 2014, 1, 54-61.	4.1	31
21	Indentation of sandwich beams with metal foam core. Transactions of Nonferrous Metals Society of China, 2014, 24, 2440-2446.	4.2	19
22	Low-velocity impact response of geometrically asymmetric slender sandwich beams with metal foam core. Composite Structures, 2013, 98, 1-14.	5.8	41
23	A YIELD CRITERION AND PLASTIC ANALYSIS FOR PHYSICALLY ASYMMETRIC SANDWICH BEAM WITH METAL FOAM CORE. International Journal of Applied Mechanics, 2013, 05, 1350037.	2.2	25
24	Resistance of Metal Sandwich Plates with Polymer Foam-Filled Core to Localized Impulse. Key Engineering Materials, 2013, 535-536, 534-538.	0.4	0
25	Influences of supra-physiological temperatures on microstructure and mechanical properties of skin tissue. Medical Engineering and Physics, 2012, 34, 1149-1156.	1.7	13
26	Large Deflection of Geometrically Asymmetric Metal Foam Core Sandwich Beam Transversely Loaded by a Flat Punch. International Journal of Aerospace and Lightweight Structures (IJALS), 2011, 01, 23.	0.1	28
27	Quasi-Static Crush Behavior of Aluminum Hexagonal Honeycomb with Perforated Cell Walls. Key Engineering Materials, 0, 535-536, 422-425.	0.4	4
28	Large Deflection of a Pin-Supported Slender Geometrically Asymmetric Sandwich Beam under Transverse Loading. Key Engineering Materials, 0, 535-536, 405-408.	0.4	0