Angelo Corti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2822775/publications.pdf

Version: 2024-02-01

207 papers 10,320 citations

53 h-index 92 g-index

210 all docs

210 docs citations

times ranked

210

9707 citing authors

#	Article	IF	CITATIONS
1	Vasostatin-1 as a potential novel circulating biomarker in patients with chronic systolic heart failure: A pilot study. Clinica Chimica Acta, 2022, 526, 49-54.	0.5	O
2	A Novel RGD-4C-Saporin Conjugate Inhibits Tumor Growth in Mouse Models of Bladder Cancer. Frontiers in Oncology, 2022, 12, 846958.	1.3	3
3	Chromogranin A plasma levels predict mortality in COVID-19. PLoS ONE, 2022, 17, e0267235.	1.1	9
4	Targeting the Blood–Brain Tumor Barrier with Tumor Necrosis Factor-α. Pharmaceutics, 2022, 14, 1414.	2.0	4
5	The chromogranin A 1â€373 fragment reveals how a single change in the protein sequence exerts strong cardioregulatory effects by engaging neuropilinâ€1. Acta Physiologica, 2021, 231, e13570.	1.8	14
6	Breaching the Blood–Brain Tumor Barrier for Tumor Therapy. Cancers, 2021, 13, 2391.	1.7	19
7	Nanogold Functionalized With Lipoamide-isoDGR: A Simple, Robust and Versatile Nanosystem for $\hat{l}\pm\nu\hat{l}^2$ 3-Integrin Targeting. Frontiers in Chemistry, 2021, 9, 690357.	1.8	2
8	Enhancement of doxorubicin anti-cancer activity by vascular targeting using IsoDGR/cytokine-coated nanogold. Journal of Nanobiotechnology, 2021, 19, 128.	4.2	13
9	CXCL10 levels at hospital admission predict COVID-19 outcome: hierarchical assessment of 53 putative inflammatory biomarkers in an observational study. Molecular Medicine, 2021, 27, 129.	1.9	41
10	NGR-TNF Engineering with an N-Terminal Serine Reduces Degradation and Post-Translational Modifications and Improves Its Tumor-Targeting Activity. Molecular Pharmaceutics, 2020, 17, 3813-3824.	2.3	6
11	Improving the antitumor activity of R-CHOP with NGR-hTNF in primary CNS lymphoma: final results of a phase 2 trial. Blood Advances, 2020, 4, 3648-3658.	2.5	24
12	Circulating Chromogranin A Is Cleaved Into Vasoregulatory Fragments in Patients With Pancreatic Ductal Adenocarcinoma. Frontiers in Oncology, 2020, 10, 613582.	1.3	2
13	Boosting Interleukinâ€12 Antitumor Activity and Synergism with Immunotherapy by Targeted Delivery with isoDGRâ€Tagged Nanogold. Small, 2019, 15, e1903462.	5.2	21
14	Chromogranin A and its fragments in cardiovascular, immunometabolic, and cancer regulation. Annals of the New York Academy of Sciences, 2019, 1455, 34-58.	1.8	64
15	Overcoming Biological Barriers in Neuroblastoma Therapy: The Vascular Targeting Approach with Liposomal Drug Nanocarriers. Small, 2019, 15, e1804591.	5.2	34
16	R-CHOP preceded by blood-brain barrier permeabilization with engineered tumor necrosis factor- \hat{l}_{\pm} in primary CNS lymphoma. Blood, 2019, 134, 252-262.	0.6	43
17	Physiological levels of chromogranin A prevent doxorubicinâ€induced cardiotoxicity without impairing its anticancer activity. FASEB Journal, 2019, 33, 7734-7747.	0.2	20
18	Spatiotemporal Regulation of Tumor Angiogenesis by Circulating Chromogranin A Cleavage and Neuropilin-1 Engagement. Cancer Research, 2019, 79, 1925-1937.	0.4	9

#	Article	IF	Citations
19	The Importance of Detail: How Differences in Ligand Structures Determine Distinct Functional Responses in Integrin $\hat{l}\pm\nu$ \hat{l}^2 3. Chemistry - A European Journal, 2019, 25, 5959-5970.	1.7	10
20	A Pilot Study on Continuous Infusion of 4% Albumin in Critically III Patients., 2019, 1, e0044.		10
21	A stapled chromogranin A-derived peptide is a potent dual ligand for integrins αvβ6 and αvβ8. Chemical Communications, 2019, 55, 14777-14780.	2.2	5
22	Association between preoperative Vasostatin-1 and pathological features of aggressiveness in localized nonfunctioning pancreatic neuroendocrine tumors (NF-PanNET). Pancreatology, 2019, 19, 57-63.	0.5	6
23	Catestatin regulates vesicular quanta through modulation of cholinergic and peptidergic (PACAPergic) stimulation in PC12 cells. Cell and Tissue Research, 2019, 376, 51-70.	1.5	11
24	Targeting Tumor Vasculature with TNF Leads Effector T Cells to the Tumor and Enhances Therapeutic Efficacy of Immune Checkpoint Blockers in Combination with Adoptive Cell Therapy. Clinical Cancer Research, 2018, 24, 2171-2181.	3.2	40
25	Catestatin Inhibits Obesity-Induced Macrophage Infiltration and Inflammation in the Liver and Suppresses Hepatic Glucose Production, Leading to Improved Insulin Sensitivity. Diabetes, 2018, 67, 841-848.	0.3	58
26	Circulating chromogranin A and its fragments as diagnostic and prognostic disease markers. Pflugers Archiv European Journal of Physiology, 2018, 470, 199-210.	1.3	36
27	Enhancement of Tumor Homing by Chemotherapy‣oaded Nanoparticles. Small, 2018, 14, e1802886.	5.2	23
28	Succinimide-Based Conjugates Improve IsoDGR Cyclopeptide Affinity to \hat{l}_{\pm} _v \hat{l}^{2} ₃ without Promoting Integrin Allosteric Activation. Journal of Medicinal Chemistry, 2018, 61, 7474-7485.	2.9	19
29	Vasostatin-1: A novel circulating biomarker for ileal and pancreatic neuroendocrine neoplasms. PLoS ONE, 2018, 13, e0196858.	1.1	14
30	Targeting CD13 with Asn-Gly-Arg (NGR) Peptide-Drug Conjugates., 2017,, 101-122.		5
31	Chromogranin A regulates vesicle storage and mitochondrial dynamics to influence insulin secretion. Cell and Tissue Research, 2017, 368, 487-501.	1.5	24
32	Plasma levels of vasostatin-1, a chromogranin A fragment, are associated with carotid artery maximum stenosis: A pilot study. International Journal of Cardiology, 2017, 236, 438-443.	0.8	11
33	Granin-derived peptides. Progress in Neurobiology, 2017, 154, 37-61.	2.8	65
34	Tumor cell-associated immune checkpoint molecules – Drivers of malignancy and stemness. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 571-583.	3.3	54
35	Glycine <i>N</i> â€Methylation in NGRâ€Tagged Nanocarriers Prevents Isoaspartate Formation and Integrin Binding without Impairing CD13 Recognition and Tumor Homing. Advanced Functional Materials, 2017, 27, 1701245.	7.8	19
36	Chromogranin A in Endothelial Homeostasis and Angiogenesis. UNIPA Springer Series, 2017, , 83-98.	0.1	0

#	Article	IF	Citations
37	Muscle injury, impaired muscle function and insulin resistance in Chromogranin A-knockout mice. Journal of Endocrinology, 2017, 232, 137-153.	1.2	8
38	T Cells Redirected to a Minor Histocompatibility Antigen Instruct Intratumoral TNFα Expression and Empower Adoptive Cell Therapy for Solid Tumors. Cancer Research, 2017, 77, 658-671.	0.4	30
39	Chromogranin-A production and fragmentation in patients with Takayasu arteritis. Arthritis Research and Therapy, 2016, 18, 187.	1.6	21
40	Plasma Chromogranin A as a marker of cardiovascular involvement in Erdheim–Chester disease. Oncolmmunology, 2016, 5, e1181244.	2.1	14
41	Targeting Macrophages Sensitizes Chronic Lymphocytic Leukemia to Apoptosis and Inhibits Disease Progression. Cell Reports, 2016, 14, 1748-1760.	2.9	90
42	Chromogranin A Is Preferentially Cleaved into Proangiogenic Peptides in the Bone Marrow of Multiple Myeloma Patients. Cancer Research, 2016, 76, 1781-1791.	0.4	24
43	Self-targeting of TNF-releasing cancer cells in preclinical models of primary and metastatic tumors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2223-2228.	3.3	35
44	NGR-tagged nano-gold: A new CD13-selective carrier for cytokine delivery to tumors. Nano Research, 2016, 9, 1393-1408.	5.8	48
45	Regulation of tumor growth by circulating full-length chromogranin A. Oncotarget, 2016, 7, 72716-72732.	0.8	18
46	Ceruloplasmin functional changes in Parkinson's disease-cerebrospinal fluid. Molecular Neurodegeneration, 2015, 10, 59.	4.4	35
47	Altered Chromogranin A Circulating Levels in Meniere's Disease. Disease Markers, 2015, 2015, 1-6.	0.6	8
48	Chromogranin A: a paradoxical player in angiogenesis and vascular biology. Cellular and Molecular Life Sciences, 2015, 72, 339-348.	2.4	41
49	Neuroblastoma-targeted nanocarriers improve drug delivery and penetration, delay tumor growth and abrogate metastatic diffusion. Biomaterials, 2015, 68, 89-99.	5.7	36
50	pGlu-serpinin protects the normotensive and hypertensive heart from ischemic injury. Journal of Endocrinology, 2015, 227, 167-178.	1.2	24
51	Effect of chromogranin Aâ€derived vasostatinâ€1 on laserâ€induced choroidal neovascularization in the mouse. Acta Ophthalmologica, 2015, 93, e218-22.	0.6	16
52	Angiopoietin-2 in Bone Marrow milieu promotes Multiple Myeloma-associated angiogenesis. Experimental Cell Research, 2015, 330, 1-12.	1.2	17
53	Abstract 4387: Anti-tumor activity of TNF-gold nanodrugs tagged with tumor vasculature-homing peptides containing the NGR or isoDGR motives. Cancer Research, 2015, 75, 4387-4387.	0.4	3
54	Oral direct thrombin inhibition: a double-edged sword?. Heart, Lung and Vessels, 2015, 7, 191-7.	0.4	2

#	Article	IF	Citations
55	Oxidation-induced Structural Changes of Ceruloplasmin Foster NGR Motif Deamidation That Promotes Integrin Binding and Signaling. Journal of Biological Chemistry, 2014, 289, 3736-3748.	1.6	28
56	TNF- \hat{A} in Erdheim-Chester disease pericardial effusion promotes endothelial leakage in vitro and is neutralized by infliximab. Rheumatology, 2014, 53, 198-200.	0.9	16
57	Bone marrow-derived CD13+cells sustain tumor progression. Oncolmmunology, 2014, 3, e27716.	2.1	5
58	A pilot Phase I study combining peptide-based vaccination and NGR-hTNF vessel targeting therapy in metastatic melanoma. Oncolmmunology, 2014, 3, e963406.	2.1	23
59	Pushing tumor cells towards a malignant phenotype: Stimuli from the microenvironment, intercellular communications and alternative roads. International Journal of Cancer, 2014, 135, 1265-1276.	2.3	51
60	Abstract 1778: Characterization and anti-tumor functionality of a neuroblastoma-specific peptide, either free or conjugated to nanocarriers., 2014,,.		0
61	Full-Length Human Chromogranin-A Cardioactivity: Myocardial, Coronary, and Stimulus-Induced Processing Evidence in Normotensive and Hypertensive Male Rat Hearts. Endocrinology, 2013, 154, 3353-3365.	1.4	41
62	Peptide-Mediated Targeting of Cytokines to Tumor Vasculature: The NGR-hTNF Example. BioDrugs, 2013, 27, 591-603.	2.2	63
63	Novel phage display-derived neuroblastoma-targeting peptides potentiate the effect of drug nanocarriers in preclinical settings. Journal of Controlled Release, 2013, 170, 233-241.	4.8	41
64	A new chromogranin A–dependent angiogenic switch activated by thrombin. Blood, 2013, 121, 392-402.	0.6	68
65	CgA in heart diseases: more than meets the eye. Lancet Diabetes and Endocrinology,the, 2013, 1, 90.	5.5	1
66	Improving Drug Uptake and Penetration into Tumors: Current and Forthcoming Opportunities. Frontiers in Oncology, 2013, 3, 161.	1.3	6
67	CD13-positive bone marrow-derived myeloid cells promote angiogenesis, tumor growth, and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20717-20722.	3.3	35
68	Approaches to improve tumor accumulation and interactions between monoclonal antibodies and immune cells. MAbs, 2013, 5, 34-46.	2.6	46
69	Selective Imaging of the Angiogenic Relevant Integrins $\hat{l}\pm5\hat{l}^21$ and $\hat{l}\pm\nu\hat{l}^23$. Angewandte Chemie - International Edition, 2013, 52, 11656-11659.	7.2	43
70	Increased low-grade inflammation is associated with lack of functional response to carvedilol in patients with systolic heart failure. Journal of Cardiovascular Medicine, 2013, 14, 49-56.	0.6	6
71	IsoDGRâ€Tagged Albumin: A New αvβ3 Selective Carrier for Nanodrug Delivery to Tumors. Small, 2013, 9, 673-678.	5.2	33
72	Abstract 5620: Novel phage display-derived neuroblastoma-targeting peptides potentiate the effect of drug nanocarriers in preclinical settings , 2013, , .		0

#	Article	IF	Citations
73	Abstract 5617: A new alpha V/beta 3 integrin selective carrier for nanodrug delivery to tumors based on iso DGR-tagged albumin, 2013, , .		O
74	Chromogranin A Regulates Tumor Self-Seeding and Dissemination. Cancer Research, 2012, 72, 449-459.	0.4	27
75	Chromogranin A and the Endothelial Barrier Function. Current Medicinal Chemistry, 2012, 19, 4051-4058.	1.2	18
76	Won't you come on in? How to favor lymphocyte infiltration in tumors. Oncolmmunology, 2012, 1, 986-988.	2.1	21
77	Development of an immunoassay for the derived-peptide of chromogranin A, Vasostatin-I (1-76): assessment of severity in patients with sepsis. Biomarkers, 2012, 17, 430-434.	0.9	8
78	Targeting TNF- \hat{l}_{\pm} to Neoangiogenic Vessels Enhances Lymphocyte Infiltration in Tumors and Increases the Therapeutic Potential of Immunotherapy. Journal of Immunology, 2012, 188, 2687-2694.	0.4	128
79	Tumor Necrosis Factor α As a Master Regulator of Inflammation in Erdheim-Chester Disease: Rationale for the Treatment of Patients With Infliximab. Journal of Clinical Oncology, 2012, 30, e286-e290.	0.8	79
80	Vasostatin-I, a chromogranin A-derived peptide, in non-selected critically ill patients: distribution, kinetics, and prognostic significance. Intensive Care Medicine, 2012, 38, 1514-1522.	3.9	24
81	Improving drug penetration to curb tumor drug resistance. Drug Discovery Today, 2012, 17, 1139-1146.	3.2	27
82	Chromogranin A and Derived Peptides in Health and Disease. Journal of Molecular Neuroscience, 2012, 48, 347-356.	1.1	76
83	Commentary: Granins, Secretory Granule Biogenesis, and Transport. Journal of Molecular Neuroscience, 2012, 48, 315-316.	1.1	0
84	Chromogranin A binds to $\hat{l}\pm v\hat{l}^2$ 6-integrin and promotes wound healing in mice. Cellular and Molecular Life Sciences, 2012, 69, 2791-2803.	2.4	17
85	The N-Terminal Fragment of Chromogranin A, Vasostatin-1 Protects Mice From Acute or Chronic Colitis Upon Oral Administration. Digestive Diseases and Sciences, 2012, 57, 1227-1237.	1.1	12
86	How to improve exposure of tumor cells to drugs â€" Promoter drugs increase tumor uptake and penetration of effector drugs. Advanced Drug Delivery Reviews, 2012, 64, 53-68.	6.6	78
87	Targeted Drug Delivery and Penetration Into Solid Tumors. Medicinal Research Reviews, 2012, 32, 1078-1091.	5.0	108
88	Abstract 1414: Regulation of tumor cell trafficking by chromogranin A. , 2012, , .		0
89	Tumor Vasculature Targeting Through NGR Peptide-Based Drug Delivery Systems. Current Pharmaceutical Biotechnology, 2011, 12, 1128-1134.	0.9	62
90	Processing of chromogranins/secretogranin in patients with diabetic retinopathy. Regulatory Peptides, 2011, 167, 118-124.	1.9	16

#	Article	IF	CITATIONS
91	The chromogranin A- derived N-terminal peptide vasostatin-l: In vivo effects on cardiovascular variables in the rabbit. Regulatory Peptides, 2011, 168, 10-20.	1.9	15
92	Isoaspartate-dependent molecular switches for integrin–ligand recognition. Journal of Cell Science, 2011, 124, 515-522.	1.2	75
93	The vasostatinâ€1 fragment of chromogranin A preserves a quiescent phenotype in hypoxiaâ€driven endothelial cells and regulates tumor neovascularization. FASEB Journal, 2011, 25, 3906-3914.	0.2	34
94	Enhanced Expression of CD13 in Vessels of Inflammatory and Neoplastic Tissues. Journal of Histochemistry and Cytochemistry, 2011, 59, 47-59.	1.3	56
95	Chromogranin A Restricts Drug Penetration and Limits the Ability of NGR-TNF to Enhance Chemotherapeutic Efficacy. Cancer Research, 2011, 71, 5881-5890.	0.4	23
96	Long human <i>CHGA</i> flanking chromosome 14 sequence required for optimal BAC transgenic "rescue―of disease phenotypes in the mouse <i>Chga</i> knockout. Physiological Genomics, 2010, 41, 91-101.	1.0	12
97	Role of vasostatin-1 C-terminal region in fibroblast cell adhesion. Cellular and Molecular Life Sciences, 2010, 67, 2107-2118.	2.4	16
98	Chromogranin A and the Tumor Microenvironment. Cellular and Molecular Neurobiology, 2010, 30, 1163-1170.	1.7	45
99	Combined targeting of perivascular and endothelial tumor cells enhances anti-tumor efficacy of liposomal chemotherapy in neuroblastoma. Journal of Controlled Release, 2010, 145, 66-73.	4.8	78
100	Cytoskeleton mediates negative inotropism and lusitropism of chromogranin A-derived peptides (human vasostatin1-78 and rat CgA1-64) in the rat heart. Regulatory Peptides, 2010, 165, 78-85.	1.9	12
101	Chromogranin A and its peptide fragments in tumour biology. Regulatory Peptides, 2010, 164, 20-21.	1.9	0
102	Oxidative stress biomarkers and chromogranin A in uremic patients: Effects of dialytic treatment. Clinical Biochemistry, 2010, 43, 1387-1392.	0.8	16
103	Immunomodulatory Agents with Antivascular Activity in the Treatment of Non-Small Cell Lung Cancer: Focus on TLR9 Agonists, IMiDs and NGR-TNF. Journal of Oncology, 2010, 2010, 1-8.	0.6	13
104	Critical Role of Flanking Residues in NGR-to-isoDGR Transition and CD13/Integrin Receptor Switching. Journal of Biological Chemistry, 2010, 285, 9114-9123.	1.6	77
105	Defining the optimal biological dose of NGR-hTNF, a selective vascular targeting agent, in advanced solid tumours. European Journal of Cancer, 2010, 46, 198-206.	1.3	50
106	Circulating chromogranin A reveals extra-articular involvement in patients with rheumatoid arthritis and curbs TNF-α-elicited endothelial activation. Journal of Leukocyte Biology, 2009, 85, 81-87.	1.5	52
107	Chapter 12 Liposome-Mediated Therapy of Neuroblastoma. Methods in Enzymology, 2009, 465, 225-249.	0.4	13
108	High blood levels of chromogranin A in giant cell arteritis identify patients refractory to corticosteroid treatment. Annals of the Rheumatic Diseases, 2009, 68, 293-295.	0.5	21

#	Article	IF	CITATIONS
109	Epitope Mapping of Human Chromogranin A by Peptide Microarrays. Methods in Molecular Biology, 2009, 570, 221-232.	0.4	6
110	Vasculatureâ€targeted tumor necrosis factorâ€alpha increases the therapeutic index of doxorubicin against prostate cancer. Prostate, 2008, 68, 1105-1115.	1.2	47
111	Vascular targeting, chemotherapy and active immunotherapy: teaming up to attack cancer. Trends in Immunology, 2008, 29, 235-241.	2.9	32
112	Structural Basis for the Interaction of isoDGR with the RGD-binding Site of $\hat{l}\pm v\hat{l}^2$ 3 Integrin. Journal of Biological Chemistry, 2008, 283, 19757-19768.	1.6	93
113	Synergistic Damage of Tumor Vessels with Ultra Low-Dose Endothelial-Monocyte Activating Polypeptide-II and Neovasculature-Targeted Tumor Necrosis Factor-α. Cancer Research, 2008, 68, 1154-1161.	0.4	45
114	Critical role of indoleamine 2,3-dioxygenase in tumor resistance to repeated treatments with targeted IFNÂ. Molecular Cancer Therapeutics, 2008, 7, 3859-3866.	1.9	25
115	Enhanced Antitumor Efficacy of Clinical-Grade Vasculature-Targeted Liposomal Doxorubicin. Clinical Cancer Research, 2008, 14, 7320-7329.	3.2	82
116	Isoaspartate-Glycine-Arginine: A New Tumor Vasculature–Targeting Motif. Cancer Research, 2008, 68, 7073-7082.	0.4	71
117	The neovasculature homing motif NGR: more than meets the eye. Blood, 2008, 112, 2628-2635.	0.6	181
118	The vasostatinâ€I fragment of chromogranin A inhibits VEGFâ€induced endothelial cell proliferation and migration. FASEB Journal, 2007, 21, 3052-3062.	0.2	75
119	Myocardial production of chromogranin A in human heart: a new regulatory peptide of cardiac function. European Heart Journal, 2007, 28, 1117-1127.	1.0	160
120	Crucial role of cytoskeleton reorganization in the negative inotropic effect of chromogranin A-derived peptides in eel and frog hearts. Regulatory Peptides, 2007, 138, 145-151.	1.9	21
121	Human recombinant chromogranin A-derived vasostatin-1 mimics preconditioning via an adenosine/nitric oxide signaling mechanism. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H719-H727.	1.5	60
122	Prognostic value of circulating chromogranin A and soluble tumor necrosis factor receptors in advanced nonsmall cell lung cancer. Cancer, 2007, 110, 845-853.	2.0	38
123	Conversation galante: How the immune and the neuroendocrine systems talk to each other. Autoimmunity Reviews, 2007, 7, 23-29.	2.5	42
124	The endocrine role for chromogranin A: A prohormone for peptides with regulatory properties. Cellular and Molecular Life Sciences, 2007, 64, 2863-2886.	2.4	185
125	Immunogenic and structural properties of the Asn-Gly-Arg (NGR) tumor neovasculature-homing motif. Molecular Immunology, 2006, 43, 1509-1518.	1.0	49
126	Post cardiac surgery diaphragmatic spasm successfully treated with gabapentin. International Journal of Cardiology, 2006, 109, 282-283.	0.8	3

#	Article	IF	CITATIONS
127	Interactions of chromogranin A-derived vasostatins and monolayers of phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine. Regulatory Peptides, 2006, 134, 30-37.	1.9	40
128	The chromogranin A peptide vasostatin-l inhibits gap formation and signal transduction mediated by inflammatory agents in cultured bovine pulmonary and coronary arterial endothelial cells. Regulatory Peptides, 2006, 135, 78-84.	1.9	63
129	Characterization of natural vasostatin-containing peptides in rat heart. FEBS Journal, 2006, 273, 3311-3321.	2.2	50
130	Neuroendocrine Modulation Induced by Selective Blockade of TNF-Â in Rheumatoid Arthritis. Annals of the New York Academy of Sciences, 2006, 1069, 428-437.	1.8	34
131	Human Recombinant Vasostatin-1 May Interfere with Cell-Extracellular Matrix Interactions. Annals of the New York Academy of Sciences, 2006, 1090, 305-310.	1.8	6
132	Effects of the tumor vasculature targeting agent NGR-TNF on the tumor microenvironment in murine lymphomas. Investigational New Drugs, 2006, 24, 27-36.	1.2	43
133	Recombinant N–terminal fragments of chromogranin–A modulate cardiac function of the Langendorff–perfused rat heart. Basic Research in Cardiology, 2006, 101, 43-52.	2.5	66
134	Targeting Liposomal Chemotherapy via Both Tumor Cell–Specific and Tumor Vasculature–Specific Ligands Potentiates Therapeutic Efficacy. Cancer Research, 2006, 66, 10073-10082.	0.4	215
135	Synergistic Antitumor Activity of Cisplatin, Paclitaxel, and Gemcitabine with Tumor Vasculature-Targeted Tumor Necrosis Factor-α. Clinical Cancer Research, 2006, 12, 175-182.	3.2	141
136	Spontaneous Formation of L-Isoaspartate and Gain of Function in Fibronectin. Journal of Biological Chemistry, 2006, 281, 36466-36476.	1.6	176
137	Peptide microarrays for the characterization of antigenic regions of human chromograninâ€A. Proteomics, 2005, 5, 3600-3603.	1.3	32
138	Targeted Delivery of IFN \hat{I}^3 to Tumor Vessels Uncouples Antitumor from Counterregulatory Mechanisms. Cancer Research, 2005, 65, 2906-2913.	0.4	87
139	Inhibitory influence of chromogranin A N-terminal fragment (vasostatin-1) on the spontaneous contractions of rat proximal colon. Regulatory Peptides, 2005, 130, 42-47.	1.9	17
140	Strategies for Improving the Anti-Neoplastic Activity of TNF by Tumor Targeting., 2004, 98, 247-264.		11
141	TNF-α Coupled to Membrane of Apoptotic Cells Favors the Cross-Priming to Melanoma Antigens. Journal of Immunology, 2004, 172, 2643-2650.	0.4	28
142	Chromogranin A protects vessels against tumor necrosis factor αâ€induced vascular leakage. FASEB Journal, 2004, 18, 554-556.	0.2	102
143	Inhibition of Tumor Growth by Intramuscular Injection of cDNA Encoding Tumor Necrosis FactorαCoupled to NGR and RGD Tumor-Homing Peptides. Human Gene Therapy, 2004, 15, 373-382.	1.4	54
144	Coupling Tumor Necrosis Factor- \hat{l} ± with \hat{l} ±V Integrin Ligands Improves Its Antineoplastic Activity. Cancer Research, 2004, 64, 565-571.	0.4	134

#	Article	IF	Citations
145	Chromogranin A N-terminal fragments vasostatin-1 and the synthetic CGA 7–57 peptide act as cardiostatins on the isolated working frog heart. General and Comparative Endocrinology, 2004, 136, 217-224.	0.8	59
146	Influence of vasostatins, the chromogranin A-derived peptides, on the working heart of the eel (Anguilla anguilla): negative inotropy and mechanism of action. General and Comparative Endocrinology, 2004, 139, 20-28.	0.8	64
147	Tumor Vascular Targeting with Tumor Necrosis Factor and Chemotherapeutic Drugs. Annals of the New York Academy of Sciences, 2004, 1028, 104-112.	1.8	78
148	Production and Characterization of Recombinant Human and Murine TNF., 2004, 98, 009-022.		7
149	Crucial Role for Interferon \hat{I}^3 in the Synergism between Tumor Vasculature-Targeted Tumor Necrosis Factor $\hat{I}\pm$ (NGR-TNF) and Doxorubicin. Cancer Research, 2004, 64, 7150-7155.	0.4	66
150	Chromogranin A in Tumors: More Than a Marker for Diagnosis and Prognosis. Current Medicinal Chemistry Immunology, Endocrine & Metabolic Agents, 2004, 4, 161-168.	0.2	8
151	Characterisation of functional biotinylated TNF-α targeted to the membrane of apoptotic melanoma cells. Journal of Immunological Methods, 2003, 276, 79-87.	0.6	6
152	Vascular damage and anti-angiogenic effects of tumor vessel-targeted liposomal chemotherapy. Cancer Research, 2003, 63, 7400-9.	0.4	242
153	Cleavage of Chromogranin A N-terminal Domain by Plasmin Provides a New Mechanism for Regulating Cell Adhesion. Journal of Biological Chemistry, 2002, 277, 45911-45919.	1.6	32
154	Structure-Activity Relationships of Linear and Cyclic Peptides Containing the NGR Tumor-homing Motif. Journal of Biological Chemistry, 2002, 277, 47891-47897.	1.6	159
155	Chromogranin A in heart failure. A novel neurohumoral factor and a predictor for mortality. European Heart Journal, 2002, 23, 967-974.	1.0	189
156	Regulation of Endothelial Cell Shape and Barrier Function by Chromogranin A. Annals of the New York Academy of Sciences, 2002, 971, 355-358.	1.8	31
157	Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. Journal of Clinical Investigation, 2002, 110, 475-482.	3.9	206
158	Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. Journal of Clinical Investigation, 2002, 110, 475-482.	3.9	111
159	Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Research, 2002, 62, 867-74.	0.4	217
160	Chromogranin A expression in neoplastic cells affects tumor growth and morphogenesis in mouse models. Cancer Research, 2002, 62, 941-6.	0.4	39
161	Roles of tumor necrosis factor p55 and p75 receptors in TNF-α-induced vascular permeability. American Journal of Physiology - Cell Physiology, 2001, 281, C1173-C1179.	2.1	80
162	Biotinylation Sites of Tumor Necrosis Factor-α Determined by Liquid Chromatography–Mass Spectrometry. Analytical Biochemistry, 2001, 298, 181-188.	1.1	8

#	Article	IF	CITATIONS
163	Structure-Activity Relationships of Chromogranin A in Cell Adhesion. Journal of Biological Chemistry, 2000, 275, 29257-29263.	1.6	70
164	Enhancement of tumor necrosis factor \hat{l}_{\pm} antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13). Nature Biotechnology, 2000, 18, 1185-1190.	9.4	403
165	Antibacterial and Antifungal Activities of Vasostatin-1, the N-terminal Fragment of Chromogranin A. Journal of Biological Chemistry, 2000, 275, 10745-10753.	1.6	144
166	Chromogranin A and Tumor Necrosis Factor-α (TNF) in Chronic Heart Failure. , 2000, 482, 351-359.		50
167	Induction of functional inducible nitric oxide synthase in monocytes of patients with congestive heart failure. Link with tumour necrosis factor-α. European Heart Journal, 1999, 20, 1503-1513.	1.0	37
168	Vascular attack and immunotherapy: a †two hits' approach to improve biological treatment of cancer. Gene Therapy, 1999, 6, 153-154.	2.3	6
169	Overexpression of the hereditary hemochromatosis protein, HFE, in HeLa cells induces an iron-deficient phenotype. FEBS Letters, 1999, 460, 149-152.	1.3	71
170	Upregulation of p75 Tumor Necrosis Factor Alpha Receptor in <i>Mycobacterium avium</i> Infected Mice: Evidence for a Functional Role. Infection and Immunity, 1999, 67, 5762-5767.	1.0	13
171	Tumor necrosis factor in congestive heart failure: A mechanism of disease for the new millennium?. Progress in Cardiovascular Diseases, 1998, 41, 25-30.	1.6	52
172	Biochemical characterization and crystal structure of a recombinant hen avidin and its acidic mutant expressed in Escherichia coli. FEBS Journal, 1998, 256, 453-460.	0.2	36
173	Chromogranin A Induces a Neurotoxic Phenotype in Brain Microglial Cells. Journal of Biological Chemistry, 1998, 273, 14339-14346.	1.6	88
174	Chromogranin A Fragments Modulate Cell Adhesion. Journal of Biological Chemistry, 1997, 272, 20835-20843.	1.6	71
175	Tumor necrosis factor \hat{l}_{\pm} and its receptors in relapsing-remitting multiple sclerosis. Journal of the Neurological Sciences, 1997, 152, 51-61.	0.3	49
176	The three-step pretargeting approach reduces the human anti-mouse antibody response in patients submitted to radioimmunoscintigraphy and radioimmunotherapy. European Journal of Nuclear Medicine and Molecular Imaging, 1997, 24, 350-351.	2.2	53
177	Production and Structure Characterization of Recombinant Chromogranin A N-Terminal Fragments (Vasostatins). Evidence of Dimmer-Monomer Equilibria. FEBS Journal, 1997, 248, 692-699.	0.2	44
178	Effect of bench-scale culture conditions on murine IgG heterogeneity., 1997, 54, 17-25.		11
179	NF-κB-mediated regulation of urokinase gene expression by PMA and TNF-α in human A549 cells. FEBS Letters, 1996, 393, 69-73.	1.3	22
180	Characterisation of circulating chromogranin A in human cancer patients. British Journal of Cancer, 1996, 73, 924-932.	2.9	32

#	Article	IF	Citations
181	Antigenic Regions of Human Chromogranin A and their Topographic Relationships with Structural/Functional Domains. FEBS Journal, 1996, 235, 275-280.	0.2	37
182	Inverse Polymerase Chain Reaction for Cloning Complete Human Immunoglobulin Variable Regions and Leaders Conserving the Original Sequence. Analytical Biochemistry, 1996, 239, 107-109.	1.1	21
183	Production of Soluble Tumor Necrosis Factor Receptor Type I in Escherichia coli: Optimization of the Refolding Yields by a Microtiter Dilution Assay. Analytical Biochemistry, 1995, 230, 85-91.	1.1	11
184	Identification of Two Forms (31-33 and 48 kD) of the Urinary Soluble p55 Tumor Necrosis Factor Receptor That Are Differentially N- and O-Glycosylated. Journal of Interferon and Cytokine Research, 1995, 15, 143-152.	0.5	14
185	Tumor Necrosis Factor Soluble Receptors in Patients With Various Degrees of Congestive Heart Failure. Circulation, 1995, 92, 1479-1486.	1.6	452
186	Tumor Necrosis Factor (TNF) α quantification by ELISA and bioassay: effects of TNFα-soluble TNF receptor (p55) complex dissociation during assay incubations. Journal of Immunological Methods, 1994, 177, 191-198.	0.6	67
187	Idiotope determining regions of a mouse monoclonal antibody and its humanized versions. Journal of Molecular Biology, 1994, 235, 53-60.	2.0	8
188	PCR amplification of antibody variable regions using primers that anneal to constant regions. Nucleic Acids Research, 1994, 22, 1768-1769.	6.5	4
189	Evidences that syngeneic alpha-type anti-idiotypic antibodies may non-competitively inhibit idiotype/oligomeric antigen interactions by affecting idiotype avidity. Molecular Immunology, 1993, 30, 1123-1131.	1.0	2
190	Kinetic analysis of TNF- $\hat{l}\pm$ oligomer-monomer transition by surface plasmon resonance and immunochemical methods. Cytokine, 1993, 5, 539-545.	1.4	26
191	Mode of Interaction Between Tumor Necrosis Factor $\hat{l}\pm$ and a Monoclonal Antibody Expressing a Recurrent Idiotype. Hybridoma, 1993, 12, 1-13.	0.9	6
192	Oligomeric tumour necrosis factor \hat{l}_{\pm} slowly converts into inactive forms at bioactive levels. Biochemical Journal, 1992, 284, 905-910.	1.7	117
193	Antigenic regions of tumor necrosis factor alpha and their topographic relationships with structural/functional domains. Molecular Immunology, 1992, 29, 471-479.	1.0	8
194	Mode of interaction between a monoclonal antibody and human TNFÎ \pm . Pharmacological Research, 1992, 26, 144-145.	3.1	0
195	Binding of human tumor necrosis factor \hat{l}_{\pm} to multimeric complementary peptides. Archives of Biochemistry and Biophysics, 1992, 296, 137-143.	1.4	26
196	Affinity enhancement of complementary peptide recognition. International Journal of Peptide and Protein Research, 1992, 39, 549-556.	0.1	22
197	Rapid and simple DNA detection by hybridization on absorbent filters. Nucleic Acids Research, 1991, 19, 1351-1351.	6.5	3
198	A rapid method for monitoring DNA labelling reactions with haptens. Journal of Immunological Methods, 1990, 134, 81-86.	0.6	2

#	Article	IF	CITATION
199	Comparison of the solid phase enzyme receptor assay (SPERA) and the microbiological assay for teicoplanin. Journal of Hospital Infection, 1986, 7, 85-89.	1.4	30
200	Autocrine saturation of pro-urokinase receptors on human A431 cells. Cell, 1986, 45, 675-684.	13.5	364
201	Purification and Characterization of Single-Chain Urokinase-Type Plasminogen Activator (Pro-Urokinase) from Human A431 Cells. Thrombosis and Haemostasis, 1986, 56, 219-224.	1.8	21
202	Differential Detection of Single-Chain and Two-Chain Urokinase-Type Plasminogen Activator by a New Immunoadsorbent-Amidolytic Assay (IAA). Thrombosis and Haemostasis, 1986, 56, 407-410.	1.8	11
203	Differentiation-enhanced binding of the amino-terminal fragment of human urokinase plasminogen activator to a specific receptor on U937 monocytes Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 4939-4943.	3.3	427
204	Synthesis and characterization of D-Alanyl-D-Alanine-Agarose. Applied Biochemistry and Biotechnology, 1985, 11, 101-109.	1.4	44
205	Teicoplanin, a new antibiotic from Actinoplanes teichomyceticus nov. sp. Antimicrobial Agents and Chemotherapy, 1984, 26, 917-923.	1.4	118
206	Monoclonal antibodies to human urokinase identify the single-chain pro-urokinase precursor Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 110-114.	3.3	35
207	Inhibition of chronic lymphocytic leukemia progression by full-length chromogranin A and its N-terminal fragment in mouse models. Oncotarget, 0, 7, 41725-41736.	0.8	9