Richard Hazeltine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2822751/publications.pdf

Version: 2024-02-01

86 papers

5,291 citations

32 h-index 71 g-index

96 all docs 96
docs citations

96 times ranked

4228 citing authors

#	Article	IF	CITATIONS
1	Functional Mapping of Sequence Learning in Normal Humans. Journal of Cognitive Neuroscience, 1995, 7, 497-510.	2.3	735
2	Dissociable Contributions of Prefrontal and Parietal Cortices to Response Selection. NeuroImage, 2002, 17, 1562-1571.	4.2	441
3	The cognitive and neural architecture of sequence representation Psychological Review, 2003, 110, 316-339.	3.8	439
4	Motor sequence learning with the nondominant left hand. Experimental Brain Research, 2002, 146, 369-378.	1.5	311
5	Abstract and Effector-Specific Representations of Motor Sequences Identified with PET. Journal of Neuroscience, 1998, 18, 9420-9428.	3. 6	309
6	Callosotomy patients exhibit temporal uncoupling during continuous bimanual movements. Nature Neuroscience, 2002, 5, 376-381.	14.8	198
7	Mental spatial transformations of objects and perspective. Spatial Cognition and Computation, 2000, 2, 315-332.	1.2	183
8	The role of input and output modality pairings in dual-task performance: Evidence for content-dependent central interference. Cognitive Psychology, 2006, 52, 291-345.	2.2	173
9	Simultaneous dual-task performance reveals parallel response selection after practice Journal of Experimental Psychology: Human Perception and Performance, 2002, 28, 527-545.	0.9	159
10	Changes in regional activity are accompanied with changes in inter-regional connectivity during 4Âweeks motor learning. Brain Research, 2010, 1318, 64-76.	2.2	130
11	Moving to Directly Cued Locations Abolishes Spatial Interference During Bimanual Actions. Psychological Science, 2001, 12, 493-498.	3.3	125
12	Material-dependent and material-independent selection processes in the frontal and parietal lobes: an event-related fMRI investigation of response competition. Neuropsychologia, 2003, 41, 1208-1217.	1.6	109
13	The boundaries of sequential modulations: Evidence for set-level control Journal of Experimental Psychology: Human Perception and Performance, 2011, 37, 1898-1914.	0.9	93
14	Dual-task interference with equal task emphasis: Graded capacity sharing or central postponement?. Perception & Psychophysics, 2003, 65, 801-816.	2.3	83
15	Conflict monitoring and feature overlap: Two sources of sequential modulations. Psychonomic Bulletin and Review, 2007, 14, 742-748.	2.8	81
16	Simultaneous dual-task performance reveals parallel response selection after practice. Journal of Experimental Psychology: Human Perception and Performance, 2002, 28, 527-45.	0.9	80
17	The Role of the Corpus Callosum in the Coupling of Bimanual Isometric Force Pulses. Journal of Neurophysiology, 2003, 90, 2409-2418.	1.8	73
18	Goal-Selection and Movement-Related Conflict during Bimanual Reaching Movements. Cerebral Cortex, 2005, 16, 1729-1738.	2.9	72

#	Article	IF	Citations
19	Domain-specific conflict adaptation without feature repetitions. Psychonomic Bulletin and Review, 2011, 18, 505-511.	2.8	69
20	Neural mechanisms of timing. Trends in Cognitive Sciences, 1997, 1, 163-169.	7.8	68
21	The influence of feedback valence in associative learning. Neurolmage, 2009, 44, 243-251.	4.2	66
22	Hierarchical Task Representation. Current Directions in Psychological Science, 2016, 25, 449-454.	5.3	64
23	Statistical learning in reading: Variability in irrelevant letters helps children learn phonics skills Developmental Psychology, 2013, 49, 1348-1365.	1.6	63
24	Conflict adaptation depends on task structure Journal of Experimental Psychology: Human Perception and Performance, 2008, 34, 958-973.	0.9	61
25	Bimanual cross-talk during reaching movements is primarily related to response selection, not the specification of motor parameters. Psychological Research, 2003, 67, 56-70.	1.7	59
26	What causes residual dual-task interference after practice?. Psychological Research, 2006, 70, 494-503.	1.7	49
27	Bimanual interference associated with the selection of target locations Journal of Experimental Psychology: Human Perception and Performance, 2003, 29, 64-77.	0.9	48
28	Left TPJ activity in verbal working memory: Implications for storage- and sensory-specific models of short term memory. Neurolmage, 2011, 55, 1836-1846.	4.2	47
29	Subcortical locus of temporal coupling in the bimanual movements of a callosotomy patient. Human Movement Science, 1999, 18, 345-375.	1.4	46
30	A Cognitive Neuroscience Perspective on Bimanual Coordination and Interference., 2004,, 259-295.		46
31	Functional organization of the primary motor cortex characterized by event-related fMRI during movement preparation and execution. Neuroscience Letters, 2003, 337, 69-72.	2.1	39
32	Common neural processes during action-stopping and infrequent stimulus detection: The frontocentral P3 as an index of generic motor inhibition. International Journal of Psychophysiology, 2021, 163, 11-21.	1.0	38
33	Modality pairing effects and the response selection bottleneck. Psychological Research, 2006, 70, 504-513.	1.7	37
34	Bimanual interference associated with the selection of target locations Journal of Experimental Psychology: Human Perception and Performance, 2003, 29, 64-77.	0.9	35
35	Voluntary and involuntary attention affect face discrimination differently. Neuropsychologia, 2008, 46, 1032-1040.	1.6	32
36	Resolved but not forgotten: Stroop conflict dredges up the past. Frontiers in Psychology, 2014, 5, 1327.	2.1	31

#	Article	IF	Citations
37	Investigating perfect timesharing: The relationship between IM-compatible tasks and dual-task performance Journal of Experimental Psychology: Human Perception and Performance, 2013, 39, 413-432.	0.9	29
38	Configural response learning: The acquisition of a nonpredictive motor skill Journal of Experimental Psychology: Human Perception and Performance, 2007, 33, 1451-1467.	0.9	26
39	Crossmodal action: modality matters. Psychological Research, 2011, 75, 445-451.	1.7	26
40	Do small dual-task costs reflect ideomotor compatibility or the absence of crosstalk?. Psychonomic Bulletin and Review, 2015, 22, 1403-1409.	2.8	24
41	Response-response compatibility during bimanual movements: Evidence for the conceptual coding of action. Psychonomic Bulletin and Review, 2005, 12, 682-688.	2.8	23
42	Searching working memory for the source of dual-task costs. Psychological Research, 2011, 75, 466-475.	1.7	23
43	Comparing the effects of positive and negative feedback in information-integration category learning. Memory and Cognition, 2017, 45, 12-25.	1.6	23
44	Automaticity of word recognition is a unique predictor of reading fluency in middle-school students Journal of Educational Psychology, 2019, 111, 314-330.	2.9	22
45	Integrating the Behavioral and Neural Dynamics of Response Selection in a Dual-task Paradigm: A Dynamic Neural Field Model of Dux et al. (). Journal of Cognitive Neuroscience, 2014, 26, 334-351.	2.3	21
46	Are There Age-Related Differences in the Ability to Learn Configural Responses?. PLoS ONE, 2015, 10, e0137260.	2.5	21
47	Conceptualization of task boundaries preserves implicit sequence learning under dual-task conditions. Psychonomic Bulletin and Review, 2013, 20, 1005-1010.	2.8	19
48	Understanding Central Processes. Psychology of Learning and Motivation - Advances in Research and Theory, 2016, 64, 195-245.	1.1	19
49	Investigating the modality specificity of response selection using a temporal flanker task. Psychological Research, 2011, 75, 499-512.	1.7	18
50	Target selection during bimanual reaching to direct cues is unaffected by the perceptual similarity of the targets Journal of Experimental Psychology: Human Perception and Performance, 2007, 33, 1107-1116.	0.9	17
51	Perceptual similarity affects the learning curve (but not necessarily learning) Journal of Experimental Psychology: General, 2014, 143, 312-331.	2.1	17
52	Incidental learning and task boundaries Journal of Experimental Psychology: Learning Memory and Cognition, 2014, 40, 1680-1700.	0.9	16
53	Keeping Simon simple: Examining the relationship between sequential modulations and feature repetitions with two stimuli, two locations and two responses. Acta Psychologica, 2011, 136, 245-252.	1.5	15
54	The roles of stimulus and response uncertainty in forced-choice performance: an amendment to Hick/Hyman Law. Psychological Research, 2016, 80, 555-565.	1.7	15

#	Article	IF	CITATIONS
55	Response control networks are selectively modulated by attention to rare events and memory load regardless of the need for inhibition. NeuroImage, 2015, 120, 331-344.	4.2	13
56	How conceptual overlap and modality pairings affect task-switching and mixing costs. Psychological Research, 2019, 83, 1020-1032.	1.7	13
57	NEUROSCIENCE: Can We Teach the Cerebellum New Tricks?. Science, 2002, 296, 1979-1980.	12.6	12
58	Neural representation of stimulus-response associations during task preparation. Brain Research, 2016, 1648, 496-505.	2.2	12
59	Cardiorespiratory fitness and hippocampal volume predict faster episodic associative learning in older adults. Hippocampus, 2020, 30, 143-155.	1.9	12
60	Cue the effects: Stimulus-action effect modality compatibility and dual-task costs Journal of Experimental Psychology: Human Perception and Performance, 2020, 46, 350-368.	0.9	12
61	Parallel Response Selection after Callosotomy. Journal of Cognitive Neuroscience, 2008, 20, 526-540.	2.3	11
62	Successful aging: The role of cognitive gerontology. Experimental Aging Research, 2018, 44, 82-93.	1.2	11
63	Dual-Task Processing With Identical Stimulus and Response Sets: Assessing the Importance of Task Representation in Dual-Task Interference. Frontiers in Psychology, 2018, 9, 1031.	2.1	11
64	Multiple Routes to Control in the Prime-Target Task: Congruence Sequence Effects Emerge Due to Modulation of Irrelevant Prime Activity and Utilization of Temporal Order Information. Journal of Cognition, 2021, 4, 18.	1.4	11
65	Age differences in episodic associative learning Psychology and Aging, 2018, 33, 144-157.	1.6	11
66	Crosstalk, not resource competition, as a source of dual-task costs: Evidence from manipulating stimulus-action effect conceptual compatibility. Psychonomic Bulletin and Review, 2021, 28, 1224-1232.	2.8	10
67	Separation of Tasks Into Distinct Domains, Not Set-Level Compatibility, Minimizes Dual-Task Interference. Frontiers in Psychology, 2019, 10, 711.	2.1	8
68	Leveling the Field for a Fairer Race between Going and Stopping: Neural Evidence for the Race Model of Motor Inhibition from a New Version of the Stop Signal Task. Journal of Cognitive Neuroscience, 2020, 32, 590-602.	2.3	8
69	Task structure boundaries affect response preparation. Psychological Research, 2020, 84, 1610-1621.	1.7	7
70	Parallel patterns of spatial compatibility and spatial congruence…as long as you don't look too closely. Acta Psychologica, 2011, 136, 253-258.	1.5	6
71	Neural structures that support implicit sequence learning. Advances in Consciousness Research, 2003, , 71-107.	0.2	6
72	Comparing Continuous and Discrete Movements with fMRI. Annals of the New York Academy of Sciences, 2002, 978, 509-510.	3.8	5

#	Article	IF	Citations
73	Incidental learning of rewarded associations bolsters learning on an associative task Journal of Experimental Psychology: Learning Memory and Cognition, 2016, 42, 786-803.	0.9	5
74	Ipsilateral sensorimotor regions and motor sequence learning. Trends in Cognitive Sciences, 2001, 5, 281-282.	7.8	4
75	Motor Skill. , 2002, , 183-200.		4
76	The benefits of stimulus-driven attention for working memory encoding. Journal of Memory and Language, 2013, 69, 384-396.	2.1	4
77	Neural Mechanisms for the Benefits of Stimulus-Driven Attention. Cerebral Cortex, 2017, 27, 5294-5302.	2.9	4
78	Students' Perceptions of a Gamified Reading Assessment. Journal of Special Education Technology, 2020, 35, 191-203.	2.2	4
79	Automaticity as an independent trait in predicting reading outcomes in middle-school Developmental Psychology, 2021, 57, 361-375.	1.6	4
80	Response-repetition costs reflect changes to the representation of an action. Psychonomic Bulletin and Review, 2022, 29, 2146-2154.	2.8	4
81	Task representation affects the boundaries of behavioral slowing following an error. Attention, Perception, and Psychophysics, 2020, 82, 2315-2326.	1.3	3
82	Reaching into response selection: Stimulus and response similarity influence central operations Journal of Experimental Psychology: Human Perception and Performance, 2017, 43, 555-568.	0.9	3
83	Goalâ€based representation in repetitive bimanual movements. International Journal of Sport and Exercise Psychology, 2004, 2, 239-254.	2.1	1
84	Foreword. Acta Psychologica, 2011, 136, 179-180.	1.5	1
85	Striking a chord with healthy aging: memory system cooperation is related to preserved configural response learning in older adults. Neurobiology of Aging, 2018, 63, 44-53.	3.1	1
86	Simultaneous training on overlapping grapheme phoneme correspondences augments learning and retention. Journal of Experimental Child Psychology, 2020, 191, 104731.	1.4	1