
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2822688/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of colloids and other fractions in the below-ground delivery of phosphorus from agricultural hillslopes to streams. Catena, 2022, 208, 105735.	2.2	8
2	Coupled steroid and phosphorus leaching from cattle slurry at lysimeter scale. Journal of Contaminant Hydrology, 2022, 247, 103979.	1.6	1
3	Quantifying MCPA load pathways at catchment scale using high temporal resolution data. Water Research, 2022, 220, 118654.	5.3	6
4	Reducing MCPA herbicide pollution at catchment scale using an agri-environmental scheme. Science of the Total Environment, 2022, 838, 156080.	3.9	3
5	Soil chemical and fertilizer influences on soluble and medium-sized colloidal phosphorus in agricultural soils. Science of the Total Environment, 2021, 754, 142112.	3.9	33
6	Approaches to herbicide (MCPA) pollution mitigation in drinking water source catchments using enhanced space and time monitoring. Science of the Total Environment, 2021, 755, 142827.	3.9	22
7	Assessing the impact of fine sediment on high status river sites. Science of the Total Environment, 2021, 759, 143895.	3.9	0
8	Fine-scale quantification of stream bank geomorphic volume loss caused by cattle access. Science of the Total Environment, 2021, 769, 144468.	3.9	4
9	Charting a perfect storm of water quality pressures. Science of the Total Environment, 2021, 787, 147576.	3.9	13
10	A review of the pesticide MCPA in the landâ€water environment and emerging research needs. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1402.	2.8	20
11	Comparing Extraction Methods for Biomarker Steroid Characterisation from Soil and Slurry. Water, Air, and Soil Pollution, 2020, 231, 524.	1.1	5
12	Catchment effects of a future Nordic bioeconomy: From land use to water resources. Ambio, 2020, 49, 1697-1709.	2.8	8
13	Using a multi-dimensional approach for catchment scale herbicide pollution assessments. Science of the Total Environment, 2020, 747, 141232.	3.9	18
14	Benchmarking inference methods for water quality monitoring and status classification. Environmental Monitoring and Assessment, 2020, 192, 261.	1.3	10
15	Influence of land management on soil erosion, connectivity, and sediment delivery in agricultural catchments: Closing the sediment budget. Land Degradation and Development, 2019, 30, 2257-2271.	1.8	11
16	A Clobal Perspective on Phosphorus Management Decision Support in Agriculture: Lessons Learned and Future Directions. Journal of Environmental Quality, 2019, 48, 1218-1233.	1.0	22
17	A carrying capacity framework for soil phosphorus and hydrological sensitivity from farm to catchment scales. Science of the Total Environment, 2019, 687, 277-286.	3.9	22
18	Integrated climate-chemical indicators of diffuse pollution from land to water. Scientific Reports, 2018, 8, 944.	1.6	49

#	Article	IF	CITATIONS
19	Assessments of Composite and Discrete Sampling Approaches for Water Quality Monitoring. Water Resources Management, 2018, 32, 3103-3118.	1.9	14
20	Non-domestic phosphorus release in rivers during low-flow: Mechanisms and implications for sources identification. Journal of Hydrology, 2018, 560, 141-149.	2.3	22
21	Sediment fingerprinting as a tool to identify temporal and spatial variability of sediment sources and transport pathways in agricultural catchments. Agriculture, Ecosystems and Environment, 2018, 267, 188-200.	2.5	29
22	Challenges of Reducing Phosphorus Based Water Eutrophication in the Agricultural Landscapes of Northwest Europe. Frontiers in Marine Science, 2018, 5, .	1.2	91
23	Soils and Water Quality. World Soils Book Series, 2018, , 235-243.	0.1	2
24	Assessing the risk of phosphorus transfer to high ecological status rivers: Integration of nutrient management with soil geochemical and hydrological conditions. Science of the Total Environment, 2017, 589, 25-35.	3.9	36
25	The role of mobilisation and delivery processes on contrasting dissolved nitrogen and phosphorus exports in groundwater fed catchments. Science of the Total Environment, 2017, 599-600, 1275-1287.	3.9	44
26	Influence of stormflow and baseflow phosphorus pressures on stream ecology in agricultural catchments. Science of the Total Environment, 2017, 590-591, 469-483.	3.9	55
27	Nonlinear empirical modeling to estimate phosphorus exports using continuous records of turbidity and discharge. Water Resources Research, 2017, 53, 7590-7606.	1.7	38
28	Characterisation of agricultural drainage ditch sediments along the phosphorus transfer continuum in two contrasting headwater catchments. Journal of Soils and Sediments, 2016, 16, 1643-1654.	1.5	22
29	Sensors in the Stream: The High-Frequency Wave of the Present. Environmental Science & Technology, 2016, 50, 10297-10307.	4.6	239
30	Incidental nutrient transfers: Assessing critical times in agricultural catchments using high-resolution data. Science of the Total Environment, 2016, 553, 404-415.	3.9	19
31	A Functional Land Management conceptual framework under soil drainage and land use scenarios. Environmental Science and Policy, 2016, 56, 39-48.	2.4	80
32	Storm Event Suspended Sediment-Discharge Hysteresis and Controls in Agricultural Watersheds: Implications for Watershed Scale Sediment Management. Environmental Science & Technology, 2016, 50, 1769-1778.	4.6	108
33	Establishing the impacts of freshwater aquaculture in tropical Asia: the potential role of palaeolimnology. Geo: Geography and Environment, 2015, 2, 148-163.	0.5	15
34	Storm-triggered, increased supply of sediment-derived phosphorus to the epilimnion in a small freshwater lake. Inland Waters, 2015, 5, 15-26.	1.1	14
35	Flow paths and phosphorus transfer pathways in two agricultural streams with contrasting flow controls. Hydrological Processes, 2015, 29, 3504-3518.	1.1	75
36	Using high-resolution phosphorus data to investigate mitigation measures in headwater river catchments. Hydrology and Earth System Sciences, 2015, 19, 453-464.	1.9	28

#	Article	IF	CITATIONS
37	Making the Most of Our Land: Managing Soil Functions from Local to Continental Scale. Frontiers in Environmental Science, 2015, 3, .	1.5	69
38	An agricultural drainage channel classification system for phosphorus management. Agriculture, Ecosystems and Environment, 2015, 199, 207-215.	2.5	38
39	Mobilisation or dilution? Nitrate response of karst springs to high rainfall events. Hydrology and Earth System Sciences, 2014, 18, 4423-4435.	1.9	60
40	Do septic tank systems pose a hidden threat to water quality?. Frontiers in Ecology and the Environment, 2014, 12, 123-130.	1.9	139
41	Evaluating the critical source area concept of phosphorus loss from soils to water-bodies in agricultural catchments. Science of the Total Environment, 2014, 490, 405-415.	3.9	45
42	Coupling of surface water and groundwater nitrate-N dynamics in two permeable agricultural catchments. Journal of Agricultural Science, 2014, 152, 107-124.	0.6	36
43	Evaluation of a surface hydrological connectivity index in agricultural catchments. Environmental Modelling and Software, 2013, 47, 7-15.	1.9	45
44	A palaeolimnological investigation into nutrient impact and recovery in an agricultural catchment. Journal of Environmental Management, 2013, 124, 147-155.	3.8	8
45	Quantification of Phosphorus Transport from a Karstic Agricultural Watershed to Emerging Spring Water. Environmental Science & Technology, 2013, 47, 6111-6119.	4.6	48
46	Field and Laboratory Tests of Flow-Proportional Passive Samplers for Determining Average Phosphorus and Nitrogen Concentration in Rivers. Environmental Science & Technology, 2013, 47, 2331-2338.	4.6	20
47	Forecasting the decline of excess soil phosphorus in agricultural catchments. Soil Use and Management, 2013, 29, 147-154.	2.6	24
48	Soil <scp>M</scp> oisture <scp>D</scp> eficit as a predictor of the trend in soil water status of grass fields. Soil Use and Management, 2013, 29, 419-431.	2.6	9
49	Use of the 15ÂN gas flux method to measure the source and level of N2O and N2 emissions from grazed grassland. Nutrient Cycling in Agroecosystems, 2012, 94, 287-298.	1.1	30
50	The seasonality of phosphorus transfers from land to water: Implications for trophic impacts and policy evaluation. Science of the Total Environment, 2012, 434, 101-109.	3.9	120
51	Delivery and impact bypass in a karst aquifer with high phosphorus source and pathway potential. Water Research, 2012, 46, 2225-2236.	5.3	29
52	Quantifying nutrient transfer pathways in agricultural catchments using high temporal resolution data. Environmental Science and Policy, 2012, 24, 44-57.	2.4	104
53	Stream water quality in intensive cereal cropping catchments with regulated nutrient management. Environmental Science and Policy, 2012, 24, 58-70.	2.4	55
54	Evaluating nutrient source regulations at different scales in five agricultural catchments. Environmental Science and Policy, 2012, 24, 34-43.	2.4	28

#	Article	IF	CITATIONS
55	Nutrient emissions to water from septic tank systems in rural catchments: Uncertainties and implications for policy. Environmental Science and Policy, 2012, 24, 71-82.	2.4	58
56	Technical Note: Assessing a 24/7 solution for monitoring water quality loads in small river catchments. Hydrology and Earth System Sciences, 2011, 15, 3093-3100.	1.9	46
57	Limitations of instantaneous water quality sampling in surface-water catchments: Comparison with near-continuous phosphorus time-series data. Journal of Hydrology, 2011, 405, 182-193.	2.3	188
58	An evaluation of catchment-scale phosphorus mitigation using load apportionment modelling. Science of the Total Environment, 2011, 409, 2211-2221.	3.9	49
59	Using the nutrient transfer continuum concept to evaluate the European Union Nitrates Directive National Action Programme. Environmental Science and Policy, 2011, 14, 664-674.	2.4	96
60	Time lag: a methodology for the estimation of vertical and horizontal travel and flushing timescales to nitrate threshold concentrations in Irish aquifers. Environmental Science and Policy, 2011, 14, 419-431.	2.4	72
61	Modelling soil phosphorus decline: Expectations of Water Framework Directive policies. Environmental Science and Policy, 2010, 13, 472-484.	2.4	108
62	The Irish Agricultural Catchments Programme: catchment selection using spatial multi riteria decision analysis. Soil Use and Management, 2010, 26, 225-236.	2.6	60
63	Evaluating the Success of Phosphorus Management from Field to Watershed. Journal of Environmental Quality, 2009, 38, 1981-1988.	1.0	119
64	A comparison of SWAT, HSPF and SHETRAN/GOPC for modelling phosphorus export from three catchments in Ireland. Water Research, 2007, 41, 1065-1073.	5.3	89
65	Defining the sources of low-flow phosphorus transfers in complex catchments. Science of the Total Environment, 2007, 382, 1-13.	3.9	77
66	Phosphorus and sediment transfers in a grassland river catchment. Nutrient Cycling in Agroecosystems, 2007, 77, 199-212.	1.1	34
67	Assessing the ecological status of candidate reference lakes in Ireland using palaeolimnology. Journal of Applied Ecology, 2006, 43, 816-827.	1.9	64
68	Patterns and processes of phosphorus transfer from Irish grassland soils to rivers—integration of laboratory and catchment studies. Journal of Hydrology, 2005, 304, 20-34.	2.3	97
69	Lake sedimentary evidence of phosphorus, iron and manganese mobilisation from intensively fertilised soils. Water Research, 2003, 37, 1426-1432.	5.3	14
70	The 20th century whole-basin trophic history of an inter-drumlin lake in an agricultural catchment. Science of the Total Environment, 2002, 297, 161-173.	3.9	16
71	Modeling Diffuse Phosphorus Loads from Land to Freshwater Using the Sedimentary Record. Environmental Science & Technology, 2001, 35, 815-819.	4.6	26
72	Perspectives on Water Quality Monitoring Approaches for Behavioral Change Research. Frontiers in Water, 0, 4, .	1.0	3