
Benjamin T Spike

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2822623/publications.pdf Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	MYC Drives Temporal Evolution of Small Cell Lung Cancer Subtypes by Reprogramming Neuroendocrine Fate. Cancer Cell, 2020, 38, 60-78.e12.	16.8	262
2	A Mammary Stem Cell Population Identified and Characterized in Late Embryogenesis Reveals Similarities to Human Breast Cancer. Cell Stem Cell, 2012, 10, 183-197.	11.1	201
3	Transcriptomic classification of genetically engineered mouse models of breast cancer identifies human subtype counterparts. Genome Biology, 2013, 14, R125.	9.6	188
4	p53, Stem Cells, and Reprogramming: Tumor Suppression beyond Guarding the Genome. Genes and Cancer, 2011, 2, 404-419.	1.9	125
5	Single-Cell Transcriptomes Distinguish Stem Cell State Changes and Lineage Specification Programs in Early Mammary Gland Development. Cell Reports, 2018, 24, 1653-1666.e7.	6.4	125
6	Cell state plasticity, stem cells, EMT, and the generation of intra-tumoral heterogeneity. Npj Breast Cancer, 2017, 3, 14.	5.2	115
7	Sox10 Regulates Stem/Progenitor and Mesenchymal Cell States in Mammary Epithelial Cells. Cell Reports, 2015, 12, 2035-2048.	6.4	107
8	The multifaceted role of the embryonic gene Cripto-1 in cancer, stem cells and epithelial-mesenchymal transition. Seminars in Cancer Biology, 2014, 29, 51-58.	9.6	86
9	CRIPTO/GRP78 Signaling Maintains Fetal and Adult Mammary Stem Cells ExÂVivo. Stem Cell Reports, 2014, 2, 427-439.	4.8	57
10	Stem Cells and the Developing Mammary Gland. Journal of Mammary Gland Biology and Neoplasia, 2013, 18, 209-219.	2.7	39
11	Luminal progenitor and fetal mammary stem cell expression features predict breast tumor response to neoadjuvant chemotherapy. Breast Cancer Research and Treatment, 2015, 149, 425-437.	2.5	29
12	Lgr5 is a marker for fetal mammary stem cells, but is not essential for stem cell activity or tumorigenesis. Npj Breast Cancer, 2017, 3, 16.	5.2	27
13	Differential requirement of GRP94 and GRP78 in mammary gland development. Scientific Reports, 2015, 4, 5390.	3.3	10
14	Dachshund Depletion Disrupts Mammary Gland Development and Diverts the Composition of the Mammary Gland Progenitor Pool. Stem Cell Reports, 2019, 12, 135-151.	4.8	10
15	Progesterone receptor antagonists reverse stem cell expansion and the paracrine effectors of progesterone action in the mouse mammary gland. Breast Cancer Research, 2021, 23, 78.	5.0	7
16	CRIPTO antagonist ALK4L75A-Fc inhibits breast cancer cell plasticity and adaptation to stress. Breast Cancer Research, 2020, 22, 125.	5.0	5
17	Whence CRIPTO: The Reemergence of an Oncofetal Factor in â€~Wounds' That Fail to Heal. International Journal of Molecular Sciences, 2021, 22, 10164.	4.1	4