Santanu Bandyopadhyay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2822231/publications.pdf

Version: 2024-02-01

203 papers 5,521 citations

38 h-index 65 g-index

217 all docs

217 docs citations

times ranked

217

3930 citing authors

#	Article	IF	CITATIONS
1	Continuous-Time Optimization Model for Source–Sink Matching in Carbon Capture and Storage Systems. Industrial & Engineering Chemistry Research, 2012, 51, 10015-10020.	1.8	318
2	Process integration of organic Rankine cycle. Energy, 2009, 34, 1674-1686.	4.5	281
3	Source composite curve for waste reduction. Chemical Engineering Journal, 2006, 125, 99-110.	6.6	174
4	Optimum sizing of photovoltaic battery systems incorporating uncertainty through design space approach. Solar Energy, 2009, 83, 1013-1025.	2.9	142
5	Thermo-economic analysis and selection of working fluid for solar organic Rankine cycle. Applied Thermal Engineering, 2016, 95, 471-481.	3.0	134
6	Design of isolated renewable hybrid power systems. Solar Energy, 2010, 84, 1124-1136.	2.9	133
7	Targeting for cogeneration potential through total site integration. Applied Thermal Engineering, 2010, 30, 6-14.	3.0	125
8	Optimum sizing of wind-battery systems incorporating resource uncertainty. Applied Energy, 2010, 87, 2712-2727.	5.1	121
9	Determination of design space and optimization of solar water heating systems. Solar Energy, 2007, 81, 958-968.	2.9	115
10	Optimum sizing of battery-integrated diesel generator for remote electrification through design-space approach. Energy, 2008, 33, 1155-1168.	4.5	115
11	One-Cycle-Controlled Single-Stage Single-Phase Voltage-Sensorless Grid-Connected PV System. IEEE Transactions on Industrial Electronics, 2013, 60, 1216-1224.	5.2	107
12	Optimization of concentrating solar thermal power plant based on parabolic trough collector. Journal of Cleaner Production, 2015, 89, 262-271.	4.6	105
13	Process Water Management. Industrial & Engineering Chemistry Research, 2006, 45, 5287-5297.	1.8	102
14	Design and optimization of isolated energy systems through pinch analysis. Asia-Pacific Journal of Chemical Engineering, 2011, 6, 518-526.	0.8	85
15	CO2 gasification of char from lignocellulosic garden waste: Experimental and kinetic study. Bioresource Technology, 2018, 263, 180-191.	4.8	85
16	Extraction of cashew (Anacardium occidentale) nut shell liquid using supercritical carbon dioxide. Bioresource Technology, 2006, 97, 847-853.	4.8	83
17	Design of solar thermal systems utilizing pressurized hot water storage for industrial applications. Solar Energy, 2008, 82, 686-699.	2.9	77
18	Extraction of cardanol and phenol from bio-oils obtained through vacuum pyrolysis of biomass using supercritical fluid extraction. Energy, 2011, 36, 1535-1542.	4.5	77

#	Article	IF	Citations
19	Co-gasification of high ash biomass and high ash coal in downdraft gasifier. Bioresource Technology, 2019, 273, 159-168.	4.8	77
20	Targeting for Multiple Resources. Industrial & Engineering Chemistry Research, 2007, 46, 3698-3708.	1.8	68
21	Cost-benefit analysis of different hydrogen production technologies using AHP and Fuzzy AHP. International Journal of Hydrogen Energy, 2014, 39, 15293-15306.	3.8	67
22	Application of design space methodology for optimum sizing of wind–battery systems. Applied Energy, 2009, 86, 2690-2703.	5.1	65
23	Thermo-economic comparisons between solar steam Rankine and organic Rankine cycles. Applied Thermal Engineering, 2016, 105, 862-875.	3.0	63
24	Water Management in Process Industries Incorporating Regeneration and Recycle through a Single Treatment Unit. Industrial & Description of Chemistry Research, 2008, 47, 1111-1119.	1.8	58
25	Benchmarking energy consumption for dump trucks in mines. Applied Energy, 2014, 113, 1382-1396.	5.1	56
26	A rigorous targeting algorithm for resource allocation networks. Chemical Engineering Science, 2007, 62, 6212-6221.	1.9	55
27	Optimization of design radiation for concentrating solar thermal power plants without storage. Solar Energy, 2014, 107, 98-112.	2.9	54
28	Modified Problem Table Algorithm for Energy Targeting. Industrial & Engineering Chemistry Research, 2010, 49, 11557-11563.	1.8	52
29	Emission constrained power system planning: a pinch analysis based study of Indian electricity sector. Clean Technologies and Environmental Policy, 2013, 15, 771-782.	2.1	51
30	Unified pinch approach for targeting of carbon capture and storage (CCS) systems with multiple time periods and regions. Journal of Cleaner Production, 2014, 71, 67-74.	4.6	50
31	Optimal source–sink matching in carbon capture and storage systems with time, injection rate, and capacity constraints. Environmental Progress and Sustainable Energy, 2013, 32, 411-416.	1.3	49
32	Optimization of solar water heating systems through water replenishment. Energy Conversion and Management, 2009, 50, 837-846.	4.4	46
33	Effect of feed on optimal thermodynamic performance of a distillation column. Chemical Engineering Journal, 2002, 88, 175-186.	6.6	45
34	Revamping downdraft gasifier to minimize clinker formation for high-ash garden waste as feedstock. Bioresource Technology, 2018, 266, 220-231.	4.8	44
35	Energy optimization in heat integrated water allocation networks. Chemical Engineering Science, 2012, 69, 352-364.	1.9	43
36	Targeting for optimal grid-wide deployment of carbon capture and storage (CCS) technology. Chemical Engineering Research and Design, 2014, 92, 835-848.	2.7	43

#	Article	IF	CITATIONS
37	A Graphical Approach for Pinch-Based Source–Sink Matching and Sensitivity Analysis in Carbon Capture and Storage Systems. Industrial & Engineering Chemistry Research, 2013, 52, 7211-7222.	1.8	41
38	An Active Harmonic Filter Based on One-Cycle Control. IEEE Transactions on Industrial Electronics, 2014, 61, 3799-3809.	5.2	41
39	Selection of energy conservation projects through Financial Pinch Analysis. Energy, 2017, 138, 602-615.	4.5	40
40	Temperature–enthalpy curve for energy targeting of distillation columns. Computers and Chemical Engineering, 1998, 22, 1733-1744.	2.0	36
41	Life cycle assessment of rice husk torrefaction and prospects for decentralized facilities at rice mills. Journal of Cleaner Production, 2020, 275, 123177.	4.6	36
42	Invariant rectifying-stripping curves for targeting minimum energy and feed location in distillation. Computers and Chemical Engineering, 1999, 23, 1109-1124.	2.0	34
43	Evolution of Resource Allocation Networks. Industrial & Engineering Chemistry Research, 2009, 48, 7152-7167.	1.8	34
44	Integration of thermo-vapor compressor with multiple-effect evaporator. Applied Energy, 2016, 184, 560-573.	5.1	34
45	Thermoeconomic optimization of combined cycle power plants. Energy Conversion and Management, 2001, 42, 359-371.	4.4	33
46	Heat Integration in Process Water Networks. Industrial & Engineering Chemistry Research, 2011, 50, 3695-3704.	1.8	33
47	Analysis of gas turbine integrated cogeneration plant: Process integration approach. Applied Thermal Engineering, 2015, 78, 118-128.	3.0	33
48	Minimization of Thermal Oil Flow Rate for Indirect Integration of Multiple Plants. Industrial & Engineering Chemistry Research, 2014, 53, 13146-13156.	1.8	32
49	Targeting for Energy Integration of Multiple Fired Heaters. Industrial & Engineering Chemistry Research, 2007, 46, 5631-5644.	1.8	31
50	Cost optimal energy sector planning: a Pinch Analysis approach. Journal of Cleaner Production, 2016, 136, 246-253.	4.6	31
51	Market prospects for biochar production and application in California. Biofuels, Bioproducts and Biorefining, 2021, 15, 1802-1819.	1.9	31
52	Power Pinch Analysis for optimal sizing of renewable-based isolated system with uncertainties. Energy, 2017, 135, 466-475.	4.5	30
53	Solar assisted multiple-effect evaporator. Journal of Cleaner Production, 2017, 142, 2340-2351.	4.6	30
54	Thermal Integration of a Distillation Column Through Side-Exchangers. Chemical Engineering Research and Design, 2007, 85, 155-166.	2.7	29

#	Article	IF	Citations
55	Segregated targeting for multiple resource networks using decomposition algorithm. AICHE Journal, 2010, 56, 1235-1248.	1.8	29
56	Line-focusing concentrating solar collector-based power plants: a review. Clean Technologies and Environmental Policy, 2017, 19, 9-35.	2.1	29
57	Indirect thermal integration for batch processes. Applied Thermal Engineering, 2014, 62, 229-238.	3.0	28
58	Economic appraisal of supercritical fluid extraction of refined cashew nut shell liquid. Journal of Chromatography A, 2006, 1124, 130-138.	1.8	27
59	Sizing curve for design of isolated power systems. Energy for Sustainable Development, 2007, 11, 21-28.	2.0	27
60	Optimization of photovoltaic–thermal (PVT) based cogeneration system through water replenishment profile. Solar Energy, 2016, 133, 512-523.	2.9	27
61	Simulation of 1MWe Solar Thermal Power Plant. Energy Procedia, 2014, 57, 507-516.	1.8	26
62	Targeting Compression Work for Hydrogen Allocation Networks. Industrial & Engineering Chemistry Research, 2014, 53, 18539-18548.	1.8	26
63	Integration of parabolic trough and linear Fresnel collectors for optimum design of concentrating solar thermal power plant. Clean Technologies and Environmental Policy, 2015, 17, 1945-1961.	2.1	26
64	Effect of placement of droop based generators in distribution network on small signal stability margin and network loss. International Journal of Electrical Power and Energy Systems, 2017, 88, 108-118.	3.3	25
65	Optimum Design of Battery-Integrated Diesel Generator Systems Incorporating Demand Uncertainty. Industrial & Demand Uncertainty Research, 2009, 48, 4908-4916.	1.8	24
66	Synthesis of Biomass-based Trigeneration Systems with Uncertainties. Industrial & Engineering Chemistry Research, 2014, 53, 18016-18028.	1.8	24
67	Simultaneously targeting for the minimum water requirement and the maximum production in a batch process. Journal of Cleaner Production, 2014, 77, 105-115.	4.6	24
68	Multiple objectives Pinch Analysis. Resources, Conservation and Recycling, 2017, 119, 128-141.	5.3	24
69	Energy integration of multiple-effect evaporator, thermo-vapor compressor, and background process. Journal of Cleaner Production, 2017, 164, 1192-1204.	4.6	24
70	Coronavirus Disease 2019 (COVID-19): we shall overcome. Clean Technologies and Environmental Policy, 2020, 22, 545-546.	2.1	24
71	Subsidised water symbiosis of eco-industrial parks: A multi-stage game theory approach. Computers and Chemical Engineering, 2021, 155, 107539.	2.0	24
72	Energy-based targets for multiple-feed distillation columns. AICHE Journal, 2004, 50, 1837-1853.	1.8	23

#	Article	IF	Citations
73	Energy conservation in water allocation networks with negligible contaminant effects. Chemical Engineering Science, 2010, 65, 4182-4193.	1.9	23
74	Energy optimization in parallel/cross feed multiple-effect evaporator based desalination system. Energy, 2016, 111, 756-767.	4.5	23
75	Energy Integration of Multiple Effect Evaporators with Background Process and Appropriate Temperature Selection. Industrial & Engineering Chemistry Research, 2016, 55, 1630-1641.	1.8	23
76	Numerical modeling and analysis of dual medium thermocline thermal energy storage. Journal of Energy Storage, 2018, 16, 218-230.	3.9	23
77	Multi-objective pinch analysis for power system planning. Applied Energy, 2017, 202, 335-347.	5.1	23
78	Targeting minimum waste treatment flow rate. Chemical Engineering Journal, 2009, 152, 367-375.	6.6	22
79	Energy sector planning using multiple-index pinch analysis. Clean Technologies and Environmental Policy, 2017, 19, 1967-1975.	2.1	22
80	Multi-objective optimisation for segregated targeting problems using Pinch Analysis. Journal of Cleaner Production, 2019, 221, 339-352.	4.6	22
81	Biochar mines: Panacea to climate change and energy crisis?. Clean Technologies and Environmental Policy, 2020, 22, 5-10.	2.1	22
82	Optimization of Multiple Freshwater Resources in a Flexible-Schedule Batch Water Network. Industrial & Engineering Chemistry Research, 2014, 53, 5996-6005.	1.8	21
83	A Pinch-Based Approach for Targeting Carbon Capture, Utilization, and Storage Systems. Industrial & Samp; Engineering Chemistry Research, 2019, 58, 3188-3198.	1.8	20
84	Interval Pinch Analysis for Resource Conservation Networks with Epistemic Uncertainties. Industrial & Lamp; Engineering Chemistry Research, 2020, 59, 13669-13681.	1.8	20
85	Analysis of high temperature thermal energy storage for solar power plant., 2012,,.		19
86	Unified Approach for the Optimization of Energy and Water in Multipurpose Batch Plants Using a Flexible Scheduling Framework. Industrial & Engineering Chemistry Research, 2013, 52, 8488-8506.	1.8	19
87	Power system planning with emission constraints: Effects of CCS retrofitting. Chemical Engineering Research and Design, 2014, 92, 447-455.	2.7	19
88	Effect of multiple water resources in a flexible-schedule batch water network. Journal of Cleaner Production, 2016, 125, 245-252.	4.6	19
89	Graphical Pinch Analysis for Planning Biochar-Based Carbon Management Networks. Process Integration and Optimization for Sustainability, 2018, 2, 159-168.	1.4	19
90	Pinch Analysis as a Quantitative Decision Framework for Determining Gaps in Health Care Delivery Systems. Process Integration and Optimization for Sustainability, 2017, 1, 213-223.	1.4	18

#	Article	IF	Citations
91	The role of process integration in managing resource constraints on negative emissions technologies. Resources, Conservation and Recycling, 2020, 153, 104540.	5.3	18
92	Technoeconomic and emissions evaluation of mobile in-woods biochar production. Energy Conversion and Management, 2020, 223, 113305.	4.4	18
93	A simple model for super critical fluid extraction of bio oils from biomass. Energy Conversion and Management, 2011, 52, 652-657.	4.4	17
94	Stochastic Pinch Analysis To Optimize Resource Allocation Networks. Industrial & Engineering Chemistry Research, 2018, 57, 16423-16432.	1.8	17
95	Sizing of standalone photovoltaic thermal (PVT) systems using design space approach. Solar Energy, 2013, 97, 48-57.	2.9	15
96	Cost optimal segregated targeting for resource allocation networks. Clean Technologies and Environmental Policy, 2014, 16, 455-465.	2.1	15
97	Water and energy assessment for dewatering in opencast mines. Journal of Cleaner Production, 2014, 84, 736-745.	4.6	15
98	Maximising heat recovery in batch processes via product streams storage and shifting. Journal of Cleaner Production, 2016, 112, 2802-2812.	4.6	15
99	Renewable targets for India. Clean Technologies and Environmental Policy, 2017, 19, 293-294.	2.1	15
100	Financial Pinch Analysis: Minimum opportunity cost targeting algorithm. Journal of Environmental Management, 2018, 212, 88-98.	3.8	15
101	Assessment of Different Technologies for Managing Yard Waste Using Analytic Hierarchy Process. Process Integration and Optimization for Sustainability, 2019, 3, 255-272.	1.4	15
102	Mathematically Rigorous Algebraic and Graphical Techniques for Targeting Minimum Resource Requirement and Interplant Flow Rate for Total Site Involving Two Plants. Industrial & Engineering Chemistry Research, 2012, 51, 3401-3417.	1.8	13
103	Improved areaâ€"energy targeting for fired heater integrated heat exchanger networks. Chemical Engineering Research and Design, 2012, 90, 213-219.	2.7	13
104	Fired heater integration into total site and multiple fired heater targeting. Applied Thermal Engineering, 2012, 42, 111-118.	3.0	13
105	Optimization of solar thermal systems with a thermocline storage tank. Clean Technologies and Environmental Policy, 2020, 22, 1069-1084.	2.1	13
106	Optimum Design of Diesel Generator Integrated Photovoltaic-Battery System. Energy &	2.5	12
107	Targeting Aggregate Production Planning for an Energy Supply Chain. Industrial & Engineering Chemistry Research, 2015, 54, 6941-6949.	1.8	12
108	Optimal Synthesis of Heat-Integrated Water Regeneration Network. Industrial & Engineering Chemistry Research, 2019, 58, 1310-1321.	1.8	12

#	Article	IF	Citations
109	Oxidative torrefaction for cleaner utilization of biomass for soil amendment. Cleaner Engineering and Technology, 2020, 1, 100033.	2.1	12
110	Iterative Pinch Analysis to address non-linearity in a stochastic Pinch problem. Journal of Cleaner Production, 2019, 227, 543-553.	4.6	11
111	Pinch analysis to reduce fire susceptibility by redeveloping urban built forms. Clean Technologies and Environmental Policy, 2020, 22, 1531-1546.	2.1	11
112	Thermal loss analysis and improvements for biomass conversion reactors. Energy Conversion and Management, 2020, 218, 112924.	4.4	11
113	Bi-objective Pinch Analysis of heat integrated water conservation networks. Journal of Cleaner Production, 2021, 312, 127676.	4.6	11
114	Pinch Analysis for Economic Appraisal of Sustainable Projects. Process Integration and Optimization for Sustainability, 2020, 4, 171-182.	1.4	11
115	Feed Preconditioning Targets for Distillation through Invariant Rectifyingâ°'Stripping Curves. Industrial & Engineering Chemistry Research, 2003, 42, 6851-6861.	1.8	10
116	Targeting for multiple resources in batch processes. Chemical Engineering Science, 2013, 104, 1081-1089.	1.9	10
117	Optimum Design of Waste Water Treatment Network. Industrial & Engineering Chemistry Research, 2013, 52, 5161-5171.	1.8	10
118	Cost Optimal Segregated Targeting Problems with Dedicated Sources. Process Integration and Optimization for Sustainability, 2018, 2, 143-158.	1.4	10
119	Synthesis of Heat-Integrated Water Allocation Networks Through Pinch Analysis. Process Integration and Optimization for Sustainability, 2019, 3, 515-531.	1.4	10
120	Capacity Expansion of Electricity Sector Using Multiple Sustainability Indicators. Process Integration and Optimization for Sustainability, 2020, 4, 51-65.	1.4	10
121	A Rigorous Targeting to Minimize Resource Requirement in Batch Processes. Industrial & Description of the Engineering Chemistry Research, 2012, 51, 8015-8024.	1.8	9
122	Bi-Objective Optimization of Interplant Integration Using Pinch Analysis. Industrial & Engineering Chemistry Research, 2019, 58, 20014-20025.	1.8	9
123	Optimization of Financial Expenditure to Improve Urban Recreational Open Spaces Using Pinch Analysis: a Case of Three Indian Cities. Process Integration and Optimization for Sustainability, 2019, 3, 273-284.	1.4	9
124	A hybrid approach for heat integration in water conservation networks through non-isothermal mixing. Energy, 2021, 233, 121143.	4.5	9
125	Physical distancing on public transport in Mumbai, India: Policy and planning implications for unlock and post-pandemic period. Transport Policy, 2022, 116, 217-236.	3.4	9
126	Effect of combustion on the economic operation of endoreversible otto and Joule-Brayton engine. International Journal of Energy Research, 1998, 22, 249-256.	2.2	8

#	Article	IF	Citations
127	Physical design space for isolated wind-battery system incorporating resource uncertainty. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2011, 225, 421-442.	0.8	8
128	Efficacy of Chemical Oxidation and Coagulation for COD and Color Reduction from Pulp Mill Effluent. Journal of Environmental Engineering, ASCE, 2012, 138, 1194-1199.	0.7	8
129	Analysis of stable periodic orbits in the one dimensional linear piecewise-smooth discontinuous map. Chaos, 2012, 22, 033126.	1.0	8
130	An alternative process for nitric oxide and hydrogen production using metal oxides. Chemical Engineering Research and Design, 2016, 112, 36-45.	2.7	8
131	Exergy efficiency improvement in hydrogen production process by recovery of chemical energy versus thermal energy. Clean Technologies and Environmental Policy, 2016, 18, 1391-1404.	2.1	8
132	Resource Allocation Network for Segregated Targeting Problems with Dedicated Sources. Industrial & Engineering Chemistry Research, 2017, 56, 13831-13843.	1.8	8
133	Public transport during pandemic. Clean Technologies and Environmental Policy, 2020, 22, 1755-1756.	2.1	8
134	Pinch-based planning of terrestrial carbon management networks. Cleaner Engineering and Technology, 2021, 4, 100141.	2.1	8
135	Thermal integration of heat transfer fluid systems. Asia-Pacific Journal of Chemical Engineering, 2014, 9, 1-15.	0.8	7
136	Evaluating sustainable economic development. Clean Technologies and Environmental Policy, 2017, 19, 1815-1816.	2.1	7
137	CRC Handbook of Thermal Engineering Second Edition. , 0, , .		7
138	Circular economy meets the drawdown economy: Enhanced weathering of industrial solid waste as a win-win solution. Resources, Conservation and Recycling, 2022, 178, 106029.	5.3	7
139	Analysis of unstable periodic orbits and chaotic orbits in the one-dimensional linear piecewise-smooth discontinuous map. Chaos, 2015, 25, 103101.	1.0	6
140	Energy targeting in heat integrated water networks with isothermal mixing. Computer Aided Chemical Engineering, 2011, 29, 1989-1993.	0.3	6
141	Efficient feed preheat targeting for distillation by feed splitting. Computer Aided Chemical Engineering, 2005, , 751-756.	0.3	5
142	Energy integration of fired heaters into overall processes. International Journal of Environment and Sustainable Development, 2009, 8, 36.	0.2	5
143	On the Existence of Non-Convexities in the Design Space of Isolated Wind-Battery Systems. Wind Engineering, 2011, 35, 223-245.	1.1	5
144	Design of renewable energy systems incorporating uncertainties through pinch analysis. Computer Aided Chemical Engineering, 2011, 29, 1994-1998.	0.3	5

#	Article	IF	CITATIONS
145	Energy Modelling of Thermal Oil Based Cooking System. Energy Procedia, 2015, 75, 1746-1751.	1.8	5
146	Careful with your energy efficiency program! It may â€rebound'!. Clean Technologies and Environmental Policy, 2015, 17, 1381-1382.	2.1	5
147	Pinch analysis approach to optimal planning of biochar-based carbon management networks., 2017,,.		5
148	Optimizing the Redevelopment Cost of Urban Areas to Minimize the Fire Susceptibility of Heterogeneous Urban Settings in Developing Nations: a Case from Mumbai, India. Process Integration and Optimization for Sustainability, 2020, 4, 361-378.	1.4	5
149	Targeting segregated problems with common resources through Pinch Analysis. Journal of Cleaner Production, 2021, 301, 126996.	4.6	5
150	Capacity expansion of power plants using dynamic energy analysis. Clean Technologies and Environmental Policy, 2021, 23, 669-683.	2.1	5
151	A Graphical Approach to Optimal Source-Sink Matching in Carbon Capture and Storage Systems with Reservoir Capacity and Injection Rate Constraints. Computer Aided Chemical Engineering, 2012, , 480-484.	0.3	5
152	Energy integration across multiple water allocation networks with negligible contaminant effects. Asia-Pacific Journal of Chemical Engineering, 2011, 6, 527-536.	0.8	4
153	Minimization of storage requirement in a batch process using pinch analysis. Computer Aided Chemical Engineering, 2012, , 670-674.	0.3	4
154	Optimum sizing of supply equipment for time varying demand. Computers and Chemical Engineering, 2015, 83, 72-78.	2.0	4
155	Modified predictive current control of Neutral-Point Clamped converter with reduced switching frequency. , 2016, , .		4
156	Optimal Temperature Selection for Energy Integrated Multiple-Effect Evaporator System. Process Integration and Optimization for Sustainability, 2017, 1, 189-202.	1.4	4
157	Thermodynamic evaluation of chemical looping based nitric oxide and hydrogen production. Chemical Engineering Research and Design, 2018, 132, 252-275.	2.7	4
158	Benchmarking Energy Consumption of Truck Haulage. Green Energy and Technology, 2018, , 159-180.	0.4	4
159	Optimizing the Modal Split to Reduce Carbon Dioxide Emission for Resource-Constrained Societies. Transportation Research Procedia, 2020, 48, 2063-2073.	0.8	4
160	Optimizing the resource cost in multiple resources allocation problem with parametric uncertainties. Chemical Engineering Research and Design, 2022, 178, 25-37.	2.7	4
161	A novel approach for produced water treatment: Supercritical water oxidation and desalination. Desalination, 2022, 532, 115716.	4.0	4
162	Design and Optimization of Isolated Wind-Battery Systems Incorporating Multiple Wind Generators. Wind Engineering, 2014, 38, 311-336.	1.1	3

#	Article	IF	Citations
163	To save the sun for a rainy day and to save the rain for a sunny day. Clean Technologies and Environmental Policy, 2015, 17, 1-2.	2.1	3
164	A pinch analysis approach to project selection problem. , 2017, , .		3
165	The first step towards energy revolution. Clean Technologies and Environmental Policy, 2019, 21, 227-228.	2.1	3
166	Milestones and Best Papers 2017–2020. Process Integration and Optimization for Sustainability, 2021, 5, 1-2.	1.4	3
167	Rethinking water policy in India with the scope of metering towards sustainable water future. Clean Technologies and Environmental Policy, 2021, 23, 2471-2495.	2.1	3
168	A1 MW National Solar Thermal Research Cum Demonstration Facility at Gwalpahari, Haryana, India. Current Science, 2015, 109, 1445.	0.4	3
169	Applications of Pinch Analysis in the Design of Isolated Energy Systems. , 2013, , 1038-1056.		2
170	Screening Curve Method for Optimum Source Sizing to Satisfy Time Varying Demand. Computer Aided Chemical Engineering, 2014, , 1573-1578.	0.3	2
171	Pursuing Sustainability with Process Integration and Optimization. Process Integration and Optimization for Sustainability, 2017, 1, 1-2.	1.4	2
172	A Mixed Integer Linear Programming (MILP) Model for Optimal Operation of Industrial Resource Conservation Networks (RCNs) Under Abnormal Conditions. Computer Aided Chemical Engineering, 2017, , 607-612.	0.3	2
173	Sustainability in Power Generation Systems. , 2017, , 157-163.		2
174	Synthesis of Heat-integrated Water Network with Interception Unit. Computer Aided Chemical Engineering, 2018, , 457-462.	0.3	2
175	A Unified Approach for the Optimization of Energy and Water in Multipurpose Batch Plants. Computer Aided Chemical Engineering, 2012, , 1382-1386.	0.3	2
176	Multiobjective Pinch Analysis for Resource Conservation in Constrained Source–Sink Problems. Industrial & Constrained Source–Sink Problems.	1.8	2
177	Uncertainties in the resource conservation problems: a review. Clean Technologies and Environmental Policy, 2022, 24, 2681-2699.	2.1	2
178	Optimum source sizing to satisfy time varying demand., 2014,,.		1
179	The answer is not blowin' in the wind, or is it?. Clean Technologies and Environmental Policy, 2014, 16, 211-212.	2.1	1
180	Let us †bring back the forest'. Clean Technologies and Environmental Policy, 2019, 21, 1381-1381.	2.1	1

#	Article	IF	CITATIONS
181	Introduction to Isolated Energy Systems. , 2019, , 1-15.		1
182	Thermal engineering for sustainable technologies. Clean Technologies and Environmental Policy, 2021, 23, 1063-1063.	2.1	1
183	Optimum Integration of Regeneration in Heat-Integrated Water Networks Through a Hybrid Approach. Process Integration and Optimization for Sustainability, 2021, 5, 707.	1.4	1
184	Targeting Minimum Heat Transfer Fluid Flow for Multiple Heat Demands. Computer Aided Chemical Engineering, 2012, 31, 675-679.	0.3	1
185	Sustainability Trends, 2021 Best Paper, and Plans for 2022. Process Integration and Optimization for Sustainability, 0 , 1 .	1.4	1
186	Economic Pinch Analysis for Estimating Service Life. Process Integration and Optimization for Sustainability, $0, 1$.	1.4	1
187	Stochastic Pinch Analysis to address multi-objective resources conservation problems with parametric uncertainties. Chemical Engineering Research and Design, 2022, 162, 30-48.	2.7	1
188	Optimization of regeneration temperature for energy integrated water allocation networks. Cleaner Engineering and Technology, 2022, , 100490.	2.1	1
189	Process water management with regeneration and recycle. Computer Aided Chemical Engineering, 2007, , 1343-1348.	0.3	O
190	A NOVEL DESIGN PROCEDURE FOR SOLAR THERMAL SYSTEMS. Advances in Process Systems Engineering, 2012, , 561-576.	0.3	0
191	Sunny days are ahead, but not without challenges. Clean Technologies and Environmental Policy, 2016, 18, 981-982.	2.1	O
192	Segregated targeting for resource allocation networks with dedicated sources. , 2017, , .		0
193	Renewable electricity: a hope for the future. Clean Technologies and Environmental Policy, 2018, 20, 227-227.	2.1	O
194	Modelling of Isolated Systems. , 2019, , 33-67.		0
195	Probabilistic Modelling and Optimization. , 2019, , 97-126.		O
196	Design and Optimization of Wind-PV-Battery Hybrid System., 2019,, 167-180.		0
197	Do Socioeconomic Characteristics Affect Travel Time and Transport Perception? Insights from Mumbai, India. Lecture Notes in Civil Engineering, 2021, , 171-181.	0.3	O
198	Design of an Optimal Standalone Wind Power Generation System. , 2012, , 111-138.		O

#	Article	lF	CITATIONS
199	6 Bioenergy and Food Production: Appropriate Allocation for Future Development. Green Chemistry and Chemical Engineering, 2017, , 221-234.	0.0	O
200	Bioenergy and Food Production: Appropriate Allocation for Future Development., 2017,, 221-234.		0
201	Multiple Wind Generator Systems. , 2019, , 141-165.		0
202	Non-convexity in the Design Space of Wind-Battery Systems. , 2019, , 127-140.		0
203	All forms of energy are equal, but some forms of energy are more equal than others. Clean Technologies and Environmental Policy, 2021, 23, 2775-2776.	2.1	0