Pandelakis A Koni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2822229/publications.pdf

Version: 2024-02-01

57752 144002 8,241 58 44 57 citations h-index g-index papers 59 59 59 12385 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Diet Diurnally Regulates Small Intestinal Microbiome-Epithelial-Immune Homeostasis and Enteritis. Cell, 2020, 182, 1441-1459.e21.	28.9	101
2	The Wnt–β-Catenin–IL-10 Signaling Axis in Intestinal APCs Protects Mice from Colitis-Associated Colon Cancer in Response to Gut Microbiota. Journal of Immunology, 2020, 205, 2265-2275.	0.8	8
3	Tet2 and Tet3 in B cells are required to repress CD86 and prevent autoimmunity. Nature Immunology, 2020, 21, 950-961.	14.5	55
4	Murine myeloproliferative disorder as a consequence of impaired collaboration between dendritic cells and CD4 T cells. Blood, 2019, 133, 319-330.	1.4	14
5	GPR81, a Cell-Surface Receptor for Lactate, Regulates Intestinal Homeostasis and Protects Mice from Experimental Colitis. Journal of Immunology, 2018, 200, 1781-1789.	0.8	99
6	Canonical Wnt Signaling in CD11c+ APCs Regulates Microbiota-Induced Inflammation and Immune Cell Homeostasis in the Colon. Journal of Immunology, 2018, 200, 3259-3268.	0.8	34
7	Homeostatic PPARα Signaling Limits Inflammatory Responses to Commensal Microbiota in the Intestine. Journal of Immunology, 2016, 196, 4739-4749.	0.8	62
8	Canonical Wnt Signaling in Dendritic Cells Regulates Th1/Th17 Responses and Suppresses Autoimmune Neuroinflammation. Journal of Immunology, 2015, 194, 3295-3304.	0.8	101
9	\hat{I}^2 -Catenin Promotes Regulatory T-cell Responses in Tumors by Inducing Vitamin A Metabolism in Dendritic Cells. Cancer Research, 2015, 75, 656-665.	0.9	94
10	B Cell Antigen Presentation Is Sufficient To Drive Neuroinflammation in an Animal Model of Multiple Sclerosis. Journal of Immunology, 2015, 194, 5077-5084.	0.8	83
11	B Cell–Specific MHC Class II Deletion Reveals Multiple Nonredundant Roles for B Cell Antigen Presentation in Murine Lupus. Journal of Immunology, 2015, 195, 2571-2579.	0.8	96
12	Specific Microbiota-Induced Intestinal Th17 Differentiation Requires MHC Class II but Not GALT and Mesenteric Lymph Nodes. Journal of Immunology, 2014, 193, 431-438.	0.8	40
13	Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature, 2013, 498, 113-117.	27.8	639
14	Constitutively CD40–Activated B Cells Regulate CD8 T Cell Inflammatory Response by IL-10 Induction. Journal of Immunology, 2013, 190, 3189-3196.	0.8	8
15	Reprogrammed Foxp3+ Regulatory T Cells Provide Essential Help to Support Cross-presentation and CD8+ T Cell Priming in Naive Mice. Immunity, 2010, 33, 942-954.	14.3	157
16	Correction: Constitutive CD40L Expression on B Cells Prematurely Terminates Germinal Center Response and Leads to Augmented Plasma Cell Production in T Cell Areas. Journal of Immunology, 2010, 185, 2631-2631.	0.8	0
17	Constitutive CD40L Expression on B Cells Prematurely Terminates Germinal Center Response and Leads to Augmented Plasma Cell Production in T Cell Areas. Journal of Immunology, 2010, 185, 220-230.	0.8	38
18	B-lymphoid cells with attributes of dendritic cells regulate T cells via indoleamine 2,3-dioxygenase. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10644-10648.	7.1	46

#	Article	IF	CITATIONS
19	The CXCL12 (SDF-1)/CXCR4 Axis Is Essential for the Development of Renal Vasculature. Journal of the American Society of Nephrology: JASN, 2009, 20, 1714-1723.	6.1	149
20	Langerhans Cells Suppress Contact Hypersensitivity Responses Via Cognate CD4 Interaction and Langerhans Cell-Derived IL-10. Journal of Immunology, 2009, 183, 5085-5093.	0.8	125
21	Indoleamine 2,3-dioxygenase controls conversion of Foxp3+ Tregs to TH17-like cells in tumor-draining lymph nodes. Blood, 2009, 113, 6102-6111.	1.4	366
22	IDO Activates Regulatory T Cells and Blocks Their Conversion into Th17-Like T Cells. Journal of Immunology, 2009, 183, 2475-2483.	0.8	419
23	Differentiation of regulatory Foxp3 ⁺ T cells in the thymic cortex. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11903-11908.	7.1	213
24	Regulation of Immune Response and Inflammatory Reactions against Viral Infection by VCAM-1. Journal of Virology, 2008, 82, 2952-2965.	3.4	31
25	Generation of C57BL/6 knockout mice using C3H × BALB/c blastocysts. BioTechniques, 2008, 44, 413-416.	1.8	12
26	MHC-Restricted B-Cell Antigen Presentation in Memory B-Cell Maintenance and Differentiation. Critical Reviews in Immunology, 2007, 27, 47-60.	0.5	8
27	Alpha-4 integrins and VCAM-1, but not MAdCAM-1, are essential for recruitment of mast cell progenitors to the inflamed lung. Blood, 2006, 108, 1588-1594.	1.4	139
28	Role of MHC Class II on Memory B Cells in Post-Germinal Center B Cell Homeostasis and Memory Response. Journal of Immunology, 2006, 176, 2122-2133.	0.8	40
29	Conditional Ablation of MHC-II Suggests an Indirect Role for MHC-II in Regulatory CD4 T Cell Maintenance. Journal of Immunology, 2006, 176, 6503-6511.	0.8	33
30	The role of CXCL12 in the organ-specific process of artery formation. Blood, 2005, 105, 3155-3161.	1.4	89
31	VCAM-1 expression in adult hematopoietic and nonhematopoietic cells is controlled by tissue-inductive signals and reflects their developmental origin. Blood, 2005, 106, 86-94.	1.4	133
32	Constitutive homing of mast cell progenitors to the intestine depends on autologous expression of the chemokine receptor CXCR2. Blood, 2005, 105, 4308-4313.	1.4	97
33	Activation of bone marrow–resident memory T cells by circulating, antigen-bearing dendritic cells. Nature Immunology, 2005, 6, 1029-1037.	14.5	207
34	The PTEN/PI3K pathway governs normal vascular development and tumor angiogenesis. Genes and Development, 2005, 19, 2054-2065.	5.9	255
35	Conditional knockout of focal adhesion kinase in endothelial cells reveals its role in angiogenesis and vascular development in late embryogenesis. Journal of Cell Biology, 2005, 169, 941-952.	5. 2	265
36	Bone Marrow Is a Major Reservoir and Site of Recruitment for Central Memory CD8+ T Cells. Immunity, 2005, 22, 259-270.	14.3	325

#	Article	IF	CITATIONS
37	The voltage-gated potassium channel Kv1.3 regulates peripheral insulin sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3112-3117.	7.1	125
38	Kv1.3 Channel Gene-Targeted Deletion Produces "Super-Smeller Mice―with Altered Glomeruli, Interacting Scaffolding Proteins, and Biophysics. Neuron, 2004, 41, 389-404.	8.1	150
39	Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. Journal of Clinical Investigation, 2004, 114, 280-290.	8.2	632
40	STAT3 deletion during hematopoiesis causes Crohn's disease-like pathogenesis and lethality: A critical role of STAT3 in innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1879-1884.	7.1	382
41	Compensatory Anion Currents in Kv1.3 Channel-deficient Thymocytes. Journal of Biological Chemistry, 2003, 278, 39443-39451.	3.4	76
42	The voltage-gated potassium channel Kv1.3 regulates energy homeostasis and body weight. Human Molecular Genetics, 2003, 12, $551-559$.	2.9	123
43	Critical Roles of Pten in B Cell Homeostasis and Immunoglobulin Class Switch Recombination. Journal of Experimental Medicine, 2003, 197, 657-667.	8.5	214
44	Lymphotoxin-α- and Lymphotoxin-β-Deficient Mice Differ in Susceptibility to Scrapie: Evidence against Dendritic Cell Involvement in Neuroinvasion. Journal of Virology, 2002, 76, 4357-4363.	3.4	47
45	A conditional null allele of the major histocompatibility IA-beta chain gene. Genesis, 2002, 32, 152-153.	1.6	70
46	Induced DNA recombination by Cre recombinase protein transduction. Genesis, 2002, 33, 48-54.	1.6	50
47	Induction of oral tolerance to cellular immune responses in the absence of Peyer's patches. European Journal of Immunology, 2001, 31, 1278-1287.	2.9	133
48	Conditional Vascular Cell Adhesion Molecule 1 Deletion in Mice. Journal of Experimental Medicine, 2001, 193, 741-754.	8.5	450
49	Follicular Dendritic Cells and Dissemination of Creutzfeldt-Jakob Disease. Journal of Virology, 2000, 74, 8614-8622.	3.4	56
50	Lymph Node Germinal Centers Form in the Absence of Follicular Dendritic Cell Networks. Journal of Experimental Medicine, 1999, 189, 855-864.	8.5	65
51	Lymphotoxin-Î ² -Deficient Mice Show Defective Antiviral Immunity. Virology, 1999, 260, 136-147.	2.4	62
52	A Role for Tumor Necrosis Factor Receptor Type 1 in Gut-associated Lymphoid Tissue Development: Genetic Evidence of Synergism with Lymphotoxin \hat{l}^2 . Journal of Experimental Medicine, 1998, 187, 1977-1983.	8.5	62
53	Distinct Roles in Lymphoid Organogenesis for Lymphotoxins α and β Revealed in Lymphotoxin β–Deficient Mice. Immunity, 1997, 6, 491-500.	14.3	564
54	Structure of the Mosquitocidal δ-Endotoxin CytB fromBacillus thuringiensissp.kyushuensisand Implications for Membrane Pore Formation. Journal of Molecular Biology, 1996, 257, 129-152.	4.2	205

#	Article	IF	CITATIONS
55	Crystallization of a membrane pore-forming protein with mosquitocidal activity fromBacillus thuringiensis subspecieskyushuensis. Proteins: Structure, Function and Bioinformatics, 1995, 23, 290-293.	2.6	4
56	Molecular Genetic Analysis of the Duplication of Human Inducible Nitric Oxide Synthase (NOS2) Sequences. Biochemical and Biophysical Research Communications, 1995, 212, 466-472.	2.1	20
57	Biochemical characterization of Bacillus thuringiensis cytolytic Â-endotoxins. Microbiology (United) Tj ETQq1 1 ().784314 1.8	rgBT_/Overloc
58	Cloning and Characterization of a Novel Bacillus thuringiensis Cytolytic Delta-Endotoxin. Journal of Molecular Biology, 1993, 229, 319-327.	4.2	83