Jongsoon Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2821771/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inflammation and insulin resistance. Journal of Clinical Investigation, 2006, 116, 1793-1801.	8.2	3,417
2	Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nature Medicine, 2005, 11, 183-190.	30.7	2,003
3	Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nature Medicine, 2009, 15, 930-939.	30.7	1,790
4	Reversal of Obesity- and Diet-Induced Insulin Resistance with Salicylates or Targeted Disruption of <i>lkkl²</i> . Science, 2001, 293, 1673-1677.	12.6	1,742
5	IKKβ/NF-κB Activation Causes Severe Muscle Wasting in Mice. Cell, 2004, 119, 285-298.	28.9	1,189
6	PPAR-Î ³ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature, 2012, 486, 549-553.	27.8	945
7	Prevention of fat-induced insulin resistance by salicylate. Journal of Clinical Investigation, 2001, 108, 437-446.	8.2	597
8	Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 446-462.	3.8	522
9	Tumor Necrosis Factor-α-induced Insulin Resistance in 3T3-L1 Adipocytes Is Accompanied by a Loss of Insulin Receptor Substrate-1 and GLUT4 Expression without a Loss of Insulin Receptor-mediated Signal Transduction. Journal of Biological Chemistry, 1997, 272, 971-976.	3.4	456
10	Metabolic Syndrome, Insulin Resistance, and Roles of Inflammation – Mechanisms and Therapeutic Targets. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1771-1776.	2.4	312
11	Use of Salsalate to Target Inflammation in the Treatment of Insulin Resistance and Type 2 Diabetes. Clinical and Translational Science, 2008, 1, 36-43.	3.1	254
12	Adipose Natural Killer Cells Regulate Adipose Tissue Macrophages to Promote Insulin Resistance in Obesity. Cell Metabolism, 2016, 23, 685-698.	16.2	244
13	Insulin Resistance Due to Phosphorylation of Insulin Receptor Substrate-1 at Serine 302. Journal of Biological Chemistry, 2004, 279, 35298-35305.	3.4	210
14	PTB Domains of IRS-1 and Shc Have Distinct but Overlapping Binding Specificities. Journal of Biological Chemistry, 1995, 270, 27407-27410.	3.4	203
15	The role of GSK3 in glucose homeostasis and the development of insulin resistance. Diabetes Research and Clinical Practice, 2007, 77, S49-S57.	2.8	198
16	Two New Substrates in Insulin Signaling, IRS5/DOK4 and IRS6/DOK5. Journal of Biological Chemistry, 2003, 278, 25323-25330.	3.4	161
17	Inflammation and adipose tissue macrophages in lipodystrophic mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 240-245.	7.1	135
18	Dynamics of Signaling during Insulin-stimulated Endocytosis of Its Receptor in Adipocytes. Journal of Biological Chemistry, 1995, 270, 59-65.	3.4	118

JONGSOON LEE

#	Article	IF	CITATIONS
19	Adipose tissue macrophages in the development of obesity-induced inflammation, insulin resistance and type 2 Diabetes. Archives of Pharmacal Research, 2013, 36, 208-222.	6.3	117
20	Pyruvate Dehydrogenase Kinase Is a Metabolic Checkpoint for Polarization of Macrophages to the M1 Phenotype. Frontiers in Immunology, 2019, 10, 944.	4.8	58
21	Conformational Changes of the Insulin Receptor upon Insulin Binding and Activation As Monitored by Fluorescence Spectroscopyâ€. Biochemistry, 1997, 36, 2701-2708.	2.5	53
22	Kinase Activation through Dimerization by Human SH2-B. Molecular and Cellular Biology, 2005, 25, 2607-2621.	2.3	53
23	Retinal Not Systemic Oxidative and Inflammatory Stress Correlated with VEGF Expression in Rodent Models of Insulin Resistance and Diabetes. , 2012, 53, 8424.		46
24	Insulin Receptor Activation with Transmembrane Domain Ligands. Journal of Biological Chemistry, 2014, 289, 19769-19777.	3.4	42
25	Unusual Suspects in the Development of Obesity-Induced Inflammation and Insulin Resistance: NK cells, iNKT cells, and ILCs. Diabetes and Metabolism Journal, 2017, 41, 229.	4.7	39
26	Macrophage Lamin A/C Regulates Inflammation and the Development of Obesity-Induced Insulin Resistance. Frontiers in Immunology, 2018, 9, 696.	4.8	32
27	Structural Studies of the Detergent-solubilized and Vesicle-reconstituted Insulin Receptor. Journal of Biological Chemistry, 1999, 274, 34981-34992.	3.4	28
28	Role of obesity-induced inflammation in the development of insulin resistance and type 2 diabetes: history of the research and remaining questions. Annals of Pediatric Endocrinology and Metabolism, 2021, 26, 1-13.	2.3	25
29	Regulation of Diet-Induced Adipose Tissue and Systemic Inflammation by Salicylates and Pioglitazone. PLoS ONE, 2013, 8, e82847.	2.5	23
30	Profilin-1 Haploinsufficiency Protects Against Obesity-Associated Glucose Intolerance and Preserves Adipose Tissue Immune Homeostasis. Diabetes, 2013, 62, 3718-3726.	0.6	20
31	Insulin Activation of Mitogen-Activated Protein (MAP) Kinase and Akt Is Phosphatidylinositol 3-Kinase-Dependent in Rat Adipocytes. Biochemical and Biophysical Research Communications, 2000, 274, 845-851.	2.1	16
32	Externalized phosphatidylinositides on apoptotic cells are eat-me signals recognized by CD14. Cell Death and Differentiation, 2022, 29, 1423-1432.	11.2	12
33	Intermolecular Phosphorylation between Insulin Holoreceptors Does Not Stimulate Substrate Kinase Activity. Journal of Biological Chemistry, 1995, 270, 31136-31140.	3.4	5
34	The Challenge of Obesity Treatment: A Review of Approved Drugs and New Therapeutic Targets. Journal of Epidemiology and Public Health Reviews, 2018, 04, .	0.1	5
35	The many faces of the creatine/phosphocreatine system. Nature Metabolism, 2022, 4, 155-156.	11.9	5