David Mackey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2821693/publications.pdf Version: 2024-02-01

DAVID MACKEY

#	Article	IF	CITATIONS
1	Effect of Hydroxycinnamic Acid Amides, Coumaroyl Tyramine and Coumaroyl Tryptamine on Biotic Stress Response in Arabidopsis. Journal of Plant Biology, 2022, 65, 145-155.	0.9	4
2	Involvement of <i>Arabidopsis</i> Acyl Carrier Protein 1 in PAMP-Triggered Immunity. Molecular Plant-Microbe Interactions, 2022, 35, 681-693.	1.4	11
3	Dynamic nutrient acquisition from a hydrated apoplast supports biotrophic proliferation of a bacterial pathogen of maize. Cell Host and Microbe, 2022, 30, 502-517.e4.	5.1	25
4	Proteasome-Dependent Degradation of RPM1 Desensitizes the RPM1-Mediated Hypersensitive Response. Journal of Plant Biology, 2021, 64, 217-225.	0.9	3
5	Redox sensor QSOX1 regulates plant immunity by targeting GSNOR to modulate ROS generation. Molecular Plant, 2021, 14, 1312-1327.	3.9	34
6	RIN4 homologs from important crop species differentially regulate the Arabidopsis NB-LRR immune receptor, RPS2. Plant Cell Reports, 2021, 40, 2341-2356.	2.8	4
7	The Transcription Factor Lrp of Pantoea stewartii subsp. stewartii Controls Capsule Production, Motility, and Virulence Important for in planta Growth. Frontiers in Microbiology, 2021, 12, 806504.	1.5	4
8	HOS15 is a transcriptional corepressor of NPR1-mediated gene activation of plant immunity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30805-30815.	3.3	21
9	Deciphering the Novel Role of AtMIN7 in Cuticle Formation and Defense against the Bacterial Pathogen Infection. International Journal of Molecular Sciences, 2020, 21, 5547.	1.8	12
10	Metabolomics as an Emerging Tool for the Study of Plant–Pathogen Interactions. Metabolites, 2020, 10, 52.	1.3	126
11	Dominant, Heritable Resistance to Stewart's Wilt in Maize Is Associated with an Enhanced Vascular Defense Response to Infection with <i>Pantoea stewartii</i> . Molecular Plant-Microbe Interactions, 2019, 32, 1581-1597.	1.4	11
12	AvrRpm1 Functions as an ADP-Ribosyl Transferase to Modify NOI-domain Containing Proteins, Including Arabidopsis and Soybean RPM1-interacting Protein 4. Plant Cell, 2019, 31, tpc.00020.2019.	3.1	45
13	A Simple Method for Measuring Apoplast Hydration and Collecting Apoplast Contents. Plant Physiology, 2019, 179, 1265-1272.	2.3	32
14	Regulated Disorder: Posttranslational Modifications Control the RIN4 Plant Immune Signaling Hub. Molecular Plant-Microbe Interactions, 2019, 32, 56-64.	1.4	68
15	The major leaf ferredoxin Fd2 regulates plant innate immunity in Arabidopsis. Molecular Plant Pathology, 2018, 19, 1377-1390.	2.0	32
16	Application of alignment-free bioinformatics methods to identify an oomycete protein with structural and functional similarity to the bacterial AvrE effector protein. PLoS ONE, 2018, 13, e0195559.	1.1	16
17	SDE5, a putative RNA export protein, participates in plant innate immunity through a flagellin-dependent signaling pathway in Arabidopsis. Scientific Reports, 2017, 7, 9859.	1.6	6
18	Effects of over-expressing a native gene encoding 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) on glyphosate resistance in Arabidopsis thaliana. PLoS ONE, 2017, 12, e0175820.	1.1	14

DAVID MACKEY

#	Article	IF	CITATIONS
19	Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins. PLoS Pathogens, 2016, 12, e1005609.	2.1	51
20	Bacterial AvrRpt2-Like Cysteine Proteases Block Activation of the Arabidopsis Mitogen-Activated Protein Kinases, MPK4 and MPK11. Plant Physiology, 2016, 171, 2223-2238.	2.3	67
21	Quantification of hydrogen peroxide in plant tissues using Amplex Red. Methods, 2016, 109, 105-113.	1.9	35
22	The Pseudomonas syringae type III effectors AvrRpm1 and AvrRpt2 promote virulence dependent on the F-box protein COI1. Plant Cell Reports, 2016, 35, 921-932.	2.8	16
23	Perturbation of Maize Phenylpropanoid Metabolism by an AvrE Family Type III Effector from <i>Pantoea stewartii</i> Â Â. Plant Physiology, 2015, 167, 1117-1135.	2.3	44
24	The phytotoxin coronatine is a multifunctional component of the virulence armament of Pseudomonas syringae. Planta, 2014, 240, 1149-1165.	1.6	112
25	Involvement of the Electrophilic Isothiocyanate Sulforaphane in Arabidopsis Local Defense Responses. Plant Physiology, 2014, 167, 251-261.	2.3	59
26	Contrasting Roles of the Apoplastic Aspartyl Protease APOPLASTIC, <i>ENHANCED DISEASE SUSCEPTIBILITY1</i> -DEPENDENT1 and LEGUME LECTIN-LIKE PROTEIN1 in Arabidopsis Systemic Acquired Resistance Â, Â Â. Plant Physiology, 2014, 165, 791-809.	2.3	151
27	The role of NOI-domain containing proteins in plant immune signaling. BMC Genomics, 2013, 14, 327.	1.2	44
28	Identification of Immunity-related Genes in Arabidopsis and Cassava Using Genomic Data. Genomics, Proteomics and Bioinformatics, 2013, 11, 345-353.	3.0	8
29	The Pseudomonas syringae pv. tomato Type III Effector HopM1 Suppresses Arabidopsis Defenses Independent of Suppressing Salicylic Acid Signaling and of Targeting AtMIN7. PLoS ONE, 2013, 8, e82032.	1.1	22
30	The Coronatine Toxin of <i>Pseudomonas syringae</i> Is a Multifunctional Suppressor of <i>Arabidopsis</i> Defense. Plant Cell, 2012, 24, 4763-4774.	3.1	105
31	Specific Threonine Phosphorylation of a Host Target by Two Unrelated Type III Effectors Activates a Host Innate Immune Receptor in Plants. Cell Host and Microbe, 2011, 9, 125-136.	5.1	168
32	Separable Fragments and Membrane Tethering of <i>Arabidopsis</i> RIN4 Regulate Its Suppression of PAMP-Triggered Immunity. Plant Cell, 2011, 23, 3798-3811.	3.1	61
33	Dose–Response to and Systemic Movement of Dexamethasone in the GVG-Inducible Transgene System in Arabidopsis. Methods in Molecular Biology, 2011, 712, 59-68.	0.4	9
34	Combining subproteome enrichment and Rubisco depletion enables identification of low abundance proteins differentially regulated during plant defense. Proteomics, 2009, 9, 138-147.	1.3	69
35	The <i>Pseudomonas syringae</i> type III effector AvrRpm1 induces significant defenses by activating the Arabidopsis nucleotideâ€binding leucineâ€rich repeat protein RPS2. Plant Journal, 2009, 57, 645-653.	2.8	58
36	Multiple Activities of the Plant Pathogen Type III Effector Proteins WtsE and AvrE Require WxxxE Motifs. Molecular Plant-Microbe Interactions, 2009, 22, 703-712.	1.4	47

DAVID MACKEY

#	Article	IF	CITATIONS
37	WtsE, an AvrEâ€family type III effector protein of <i>Pantoea stewartii </i> subsp. <i>stewartii</i> , causes cell death in nonâ€host plants. Molecular Plant Pathology, 2008, 9, 633-643.	2.0	42
38	Measuring Cell-Wall-Based Defenses and Their Effect on Bacterial Growth in Arabidopsis. , 2008, 415, 443-452.		24
39	Elicitors, Effectors, andRGenes: The New Paradigm and a Lifetime Supply of Questions. Annual Review of Phytopathology, 2007, 45, 399-436.	3.5	668
40	Layered basal defenses underlie non-host resistance of Arabidopsis to Pseudomonas syringae pv. phaseolicola. Plant Journal, 2007, 51, 604-616.	2.8	71
41	Defense suppression by virulence effectors of bacterial phytopathogens. Current Opinion in Plant Biology, 2007, 10, 349-357.	3.5	83
42	MAMPs and MIMPs: proposed classifications for inducers of innate immunity. Molecular Microbiology, 2006, 61, 1365-1371.	1.2	148
43	Phospholipase-dependent signalling during the AvrRpm1- and AvrRpt2-induced disease resistance resistance responses inArabidopsis thaliana. Plant Journal, 2006, 47, 947-959.	2.8	160
44	Innate immunity in plants: a continuum of layered defenses. Microbes and Infection, 2006, 8, 1372-1381.	1.0	50
45	Two Pseudomonas syringae Type III Effectors Inhibit RIN4-Regulated Basal Defense in Arabidopsis. Cell, 2005, 121, 749-759.	13.5	416
46	Arabidopsis RIN4 Negatively Regulates Disease Resistance Mediated by RPS2 and RPM1 Downstream or Independent of the NDR1 Signal Modulator and Is Not Required for the Virulence Functions of Bacterial Type III Effectors AvrRpt2 or AvrRpm1. Plant Cell, 2004, 16, 2822-2835.	3.1	222
47	SIVB 2003 Congress Symposium Proceeding: Plant-Targets of Pathogenic Effectors Can Transduce Both Virulence and Resistance Signals. In Vitro Cellular and Developmental Biology - Plant, 2004, 40, 251-255.	0.9	0
48	Arabidopsis RIN4 Is a Target of the Type III Virulence Effector AvrRpt2 and Modulates RPS2-Mediated Resistance. Cell, 2003, 112, 379-389.	13.5	852
49	RIN4 Interacts with Pseudomonas syringae Type III Effector Molecules and Is Required for RPM1-Mediated Resistance in Arabidopsis. Cell, 2002, 108, 743-754.	13.5	1,055
50	Recognition of pathogens by plants. Current Biology, 2000, 10, R5-R7.	1.8	29
51	The Linking Regions of EBNA1 Are Essential for Its Support of Replication and Transcription. Molecular and Cellular Biology, 1999, 19, 3349-3359.	1.1	98