Michelle L Hladik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2821679/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Environmental Risks and Challenges Associated with Neonicotinoid Insecticides. Environmental Science & Technology, 2018, 52, 3329-3335.	10.0	316
2	Widespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region, USA. Environmental Pollution, 2014, 193, 189-196.	7.5	297
3	Expanded Target-Chemical Analysis Reveals Extensive Mixed-Organic-Contaminant Exposure in U.S. Streams. Environmental Science & Technology, 2017, 51, 4792-4802.	10.0	245
4	Occurrence of Neonicotinoid Insecticides in Finished Drinking Water and Fate during Drinking Water Treatment. Environmental Science and Technology Letters, 2017, 4, 168-173.	8.7	206
5	A critical review on the potential impacts of neonicotinoid insecticide use: current knowledge of environmental fate, toxicity, and implications for human health. Environmental Sciences: Processes and Impacts, 2020, 22, 1315-1346.	3.5	187
6	Exposure of native bees foraging in an agricultural landscape to current-use pesticides. Science of the Total Environment, 2016, 542, 469-477.	8.0	177
7	First national-scale reconnaissance of neonicotinoid insecticides in streams across the USA. Environmental Chemistry, 2016, 13, 12.	1.5	170
8	Occurrence and Potential Sources of Pyrethroid Insecticides in Stream Sediments from Seven U.S. Metropolitan Areas. Environmental Science & Technology, 2012, 46, 4297-4303.	10.0	163
9	Urban Stormwater: An Overlooked Pathway of Extensive Mixed Contaminants to Surface and Groundwaters in the United States. Environmental Science & Technology, 2019, 53, 10070-10081.	10.0	149
10	Year-round presence of neonicotinoid insecticides in tributaries to the Great Lakes, USA. Environmental Pollution, 2018, 235, 1022-1029.	7.5	116
11	Complex mixtures of dissolved pesticides show potential aquatic toxicity in a synoptic study of Midwestern U.S. streams. Science of the Total Environment, 2018, 613-614, 1469-1488.	8.0	116
12	Pesticide concentrations in frog tissue and wetland habitats in a landscape dominated by agriculture. Science of the Total Environment, 2015, 502, 80-90.	8.0	115
13	Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams. Science of the Total Environment, 2014, 466-467, 1085-1093.	8.0	109
14	Increasing neonicotinoid use and the declining butterfly fauna of lowland California. Biology Letters, 2016, 12, 20160475.	2.3	97
15	Assessing the Occurrence and Distribution of Pyrethroids in Water and Suspended Sediments. Journal of Agricultural and Food Chemistry, 2009, 57, 9079-9085.	5.2	78
16	Neutral chloroacetamide herbicide degradates and related compounds in Midwestern United States drinking water sources. Science of the Total Environment, 2008, 390, 155-165.	8.0	73
17	A Multi-residue Method for the Analysis of Pesticides and Pesticide Degradates in Water Using HLB Solid-phase Extraction and Gas Chromatography–Ion Trap Mass Spectrometry. Bulletin of Environmental Contamination and Toxicology, 2008, 80, 139-144.	2.7	71
18	Chlorinated Byproducts of Neonicotinoids and Their Metabolites: An Unrecognized Human Exposure Potential?. Environmental Science and Technology Letters, 2019, 6, 98-105.	8.7	70

MICHELLE L HLADIK

#	Article	IF	CITATIONS
19	Bifenthrin Causes Trophic Cascade and Altered Insect Emergence in Mesocosms: Implications for Small Streams. Environmental Science & Technology, 2016, 50, 11974-11983.	10.0	61
20	Are Neutral Chloroacetamide Herbicide Degradates of Potential Environmental Concern? Analysis and Occurrence in the Upper Chesapeake Bay. Environmental Science & Technology, 2005, 39, 6561-6574.	10.0	58
21	Pyrethroid insecticide concentrations and toxicity in streambed sediments and loads in surface waters of the San Joaquin Valley, California, USA. Environmental Toxicology and Chemistry, 2010, 29, 813-823.	4.3	57
22	Beyond neonicotinoids – Wild pollinators are exposed to a range of pesticides while foraging in agroecosystems. Science of the Total Environment, 2020, 742, 140436.	8.0	50
23	Neutral degradates of chloroacetamide herbicides: Occurrence in drinking water and removal during conventional water treatment. Water Research, 2008, 42, 4905-4914.	11.3	49
24	Pyrethroid insecticides in bed sediments from urban and agricultural streams across the United States. Journal of Environmental Monitoring, 2012, 14, 1838.	2.1	48
25	Storm-event-transport of urban-use pesticides to streams likely impairs invertebrate assemblages. Environmental Monitoring and Assessment, 2016, 188, 345.	2.7	48
26	The effects of fipronil and the photodegradation product fipronil desulfinyl on growth and gene expression in juvenile blue crabs, Callinectes sapidus, at different salinities. Aquatic Toxicology, 2017, 186, 96-104.	4.0	47
27	Organic geochemistry and toxicology of a stream impacted by unconventional oil and gas wastewater disposal operations. Applied Geochemistry, 2017, 80, 155-167.	3.0	46
28	Toxicokinetics of Imidacloprid-Coated Wheat Seeds in Japanese Quail (<i>Coturnix japonica</i>) and an Evaluation of Hazard. Environmental Science & Technology, 2019, 53, 3888-3897.	10.0	46
29	Removal of neutral chloroacetamide herbicide degradates during simulated unit processes for drinking water treatment. Water Research, 2005, 39, 5033-5044.	11.3	44
30	Reconnaissance of Mixed Organic and Inorganic Chemicals in Private and Public Supply Tapwaters at Selected Residential and Workplace Sites in the United States. Environmental Science & Technology, 2018, 52, 13972-13985.	10.0	41
31	Neonicotinoid insecticide removal by prairie strips in row-cropped watersheds with historical seed coating use. Agriculture, Ecosystems and Environment, 2017, 241, 160-167.	5.3	37
32	Biofilms Provide New Insight into Pesticide Occurrence in Streams and Links to Aquatic Ecological Communities. Environmental Science & Technology, 2020, 54, 5509-5519.	10.0	34
33	Mixed organic and inorganic tapwater exposures and potential effects in greater Chicago area, USA. Science of the Total Environment, 2020, 719, 137236.	8.0	32
34	Differences in Neonicotinoid and Metabolite Sorption to Activated Carbon Are Driven by Alterations to the Insecticidal Pharmacophore. Environmental Science & Technology, 2020, 54, 14694-14705.	10.0	29
35	Exploring the amphibian exposome in an agricultural landscape using telemetry and passive sampling. Scientific Reports, 2018, 8, 10045.	3.3	28
36	Dairy-Impacted Wastewater Is a Source of lodinated Disinfection Byproducts in the Environment. Environmental Science and Technology Letters, 2016, 3, 190-193.	8.7	27

MICHELLE L HLADIK

#	Article	IF	CITATIONS
37	Leaching and sorption of neonicotinoid insecticides and fungicides from seed coatings. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2018, 53, 176-183.	1.5	27
38	Occurrence of Dichloroacetamide Herbicide Safeners and Co-Applied Herbicides in Midwestern U.S. Streams. Environmental Science and Technology Letters, 2018, 5, 3-8.	8.7	26
39	Pesticide exposure of wild bees and honey bees foraging from field border flowers in intensively managed agriculture areas. Science of the Total Environment, 2022, 831, 154697.	8.0	24
40	Concentrations and loads of suspended sediment-associated pesticides in the San Joaquin River, California and tributaries during storm events. Science of the Total Environment, 2009, 408, 356-364.	8.0	23
41	Nitrapyrin in Streams: The First Study Documenting Off-Field Transport of a Nitrogen Stabilizer Compound. Environmental Science and Technology Letters, 2016, 3, 387-392.	8.7	23
42	Exposure and potential effects of pesticides and pharmaceuticals in protected streams of the US National park Service southeast region. Science of the Total Environment, 2020, 704, 135431.	8.0	23
43	Uptake, Metabolism, and Elimination of Fungicides from Coated Wheat Seeds in Japanese Quail (<i>Coturnix japonica</i>). Journal of Agricultural and Food Chemistry, 2020, 68, 1514-1524.	5.2	23
44	Widespread Use of the Nitrification Inhibitor Nitrapyrin: Assessing Benefits and Costs to Agriculture, Ecosystems, and Environmental Health. Environmental Science & Technology, 2021, 55, 1345-1353.	10.0	23
45	Environmental and anthropogenic drivers of contaminants in agricultural watersheds with implications for land management. Science of the Total Environment, 2021, 774, 145687.	8.0	23
46	Fate and transport of nitrapyrin in agroecosystems: Occurrence in agricultural soils, subsurface drains, and receiving streams in the Midwestern US. Science of the Total Environment, 2019, 650, 2830-2841.	8.0	22
47	Widespread occurrence and potential for biodegradation of bioactive contaminants in Congaree National Park, USA. Environmental Toxicology and Chemistry, 2017, 36, 3045-3056.	4.3	21
48	Analysis of Chlorothalonil and Three Degradates in Sediment and Soil. Journal of Agricultural and Food Chemistry, 2008, 56, 2310-2314.	5.2	20
49	Management of Arthropod Pathogen Vectors in North America: Minimizing Adverse Effects on Pollinators. Journal of Medical Entomology, 2017, 54, 1463-1475.	1.8	20
50	Crossâ€Ecosystem Fluxes of Pesticides from Prairie Wetlands Mediated by Aquatic Insect Emergence: Implications for Terrestrial Insectivores. Environmental Toxicology and Chemistry, 2021, 40, 2282-2296.	4.3	20
51	Spatiotemporal variation in occurrence and co-occurrence of pesticides, hormones, and other organic contaminants in rivers in the Chesapeake Bay Watershed, United States. Science of the Total Environment, 2020, 728, 138765.	8.0	19
52	Public and private tapwater: Comparative analysis of contaminant exposure and potential risk, Cape Cod, Massachusetts, USA. Environment International, 2021, 152, 106487.	10.0	18
53	Esfenvalerate toxicity to the cladoceran Ceriodaphnia dubia in the presence of green algae, Pseudokirchneriella subcapitata. Ecotoxicology, 2012, 21, 2409-2418.	2.4	17
54	Pilot-scale expanded assessment of inorganic and organic tapwater exposures and predicted effects in Puerto Rico, USA. Science of the Total Environment, 2021, 788, 147721.	8.0	17

MICHELLE L HLADIK

#	Article	IF	CITATIONS
55	Prevalence of neonicotinoids and sulfoxaflor in alluvial aquifers in a high corn and soybean producing region of the Midwestern United States. Science of the Total Environment, 2021, 782, 146762.	8.0	16
56	Uptake and toxicity of clothianidin to monarch butterflies from milkweed consumption. PeerJ, 2020, 8, e8669.	2.0	16
57	Salinity Changes the Dynamics of Pyrethroid Toxicity in Terms of Behavioral Effects on Newly Hatched Delta Smelt Larvae. Toxics, 2021, 9, 40.	3.7	15
58	Watershed-Scale Risk to Aquatic Organisms from Complex Chemical Mixtures in the Shenandoah River. Environmental Science & Technology, 2022, 56, 845-861.	10.0	14
59	Impact of wastewater infrastructure upgrades on the urban water cycle: Reduction in halogenated reaction byproducts following conversion from chlorine gas to ultraviolet light disinfection. Science of the Total Environment, 2015, 529, 264-274.	8.0	11
60	Effects of the Neonicotinoid Insecticide Clothianidin on Southern Leopard Frog (Rana sphenocephala) Tadpole Behavior. Bulletin of Environmental Contamination and Toxicology, 2019, 103, 717-722.	2.7	11
61	Evaluation of ELISA for the analysis of imidacloprid in biological matrices: Cross-reactivities, matrix interferences, and comparison to LC-MS/MS. Chemosphere, 2022, 286, 131746.	8.2	7
62	Effects of two fungicide formulations on microbial and macroinvertebrate leaf decomposition under laboratory conditions. Environmental Toxicology and Chemistry, 2016, 35, 2834-2844.	4.3	6
63	Highlighting the complexities of a groundwater pilot study during an avian influenza outbreak: Methods, lessons learned, and select contaminant results. Environmental Research, 2017, 158, 212-224.	7.5	5
64	Exploring Biophysical Linkages between Coastal Forestry Management Practices and Aquatic Bivalve Contaminant Exposure. Toxics, 2021, 9, 46.	3.7	4
65	Cyprosulfamide: Analysis of the Herbicide Safener and Two of Its Degradates in Surface Water and Groundwater from the Midwestern United States. ACS Agricultural Science and Technology, 2021, 1, 355-361.	2.3	4
66	Juvenile African Clawed Frogs (Xenopus laevis) Express Growth, Metamorphosis, Mortality, Gene Expression, and Metabolic Changes When Exposed to Thiamethoxam and Clothianidin. International Journal of Molecular Sciences, 2021, 22, 13291.	4.1	4
67	Occurrence of Pyrethroids in Bed and Suspended Sediments in California. ACS Symposium Series, 2008, , 55-71.	0.5	3
68	Review of and Recommendations for Monitoring Contaminants and their Effects in the San Francisco Bayâ^'Delta. San Francisco Estuary and Watershed Science, 2019, 17, .	0.4	3
69	The silence of the clams: Forestry registered pesticides as multiple stressors on soft-shell clams. Science of the Total Environment, 2021, , 152053.	8.0	2
70	Site―and individualâ€level contamination affects infection prevalence of an emerging infectious disease of amphibians. Environmental Toxicology and Chemistry, 2022, , .	4.3	1
71	Assessing the ecological functionality and integrity of natural ponds, excavated ponds and stormwater basins for conserving amphibian diversity. Global Ecology and Conservation, 2021, 30, e01765.	2.1	0
72	Exposure to crop production alters cecal prokaryotic microbiota, inflates virulome and resistome in wild prairie grouse. Environmental Pollution, 2022, 306, 119418.	7.5	0