List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2821580/publications.pdf Version: 2024-02-01

Δανυίο Κ Ιλινι

#	Article	IF	CITATIONS
1	Pixelated metasurfaces for linear-polarization conversion and absorption. Journal of Electromagnetic Waves and Applications, 2022, 36, 1008-1019.	1.6	13
2	Computational Study of a Compact and High Sensitive Photonic Crystal for Cancer Cells Detection. IEEE Sensors Journal, 2022, 22, 3298-3305.	4.7	23
3	Efficiency enhancement of the reltron oscillator using four-grid asymmetrical RF interaction cavity. Journal of Electromagnetic Waves and Applications, 2022, 36, 1957-1967.	1.6	2
4	Analysis of the Dual Side-Coupled RF Cavities for the HPM Devices—An Equivalent Circuit Approach. IEEE Transactions on Electron Devices, 2022, 69, 2051-2057.	3.0	1
5	Axially Partitioned Dual Band Magnetically Insulated Line Oscillator. IEEE Transactions on Plasma Science, 2022, 50, 1198-1205.	1.3	6
6	Pixelated bicontrollable metasurface absorber tunable in complete X band. Journal of Electromagnetic Waves and Applications, 2022, 36, 2505-2518.	1.6	2
7	Power and Efficiency Enhancement of Reltron With Two-Stage RF Output. IEEE Transactions on Electron Devices, 2021, 68, 1936-1938.	3.0	1
8	Design, Analysis, and Simulation Studies of TE _{10,4} Mode, 100-kW <i>W</i> -Band Gyrotron Oscillator. IEEE Transactions on Plasma Science, 2021, 49, 1794-1803.	1.3	2
9	RF behavior of a 35 GHz conventional cavity gyrotron using multimode analysis and PIC simulation. Journal of Electromagnetic Waves and Applications, 2021, 35, 2428-2446.	1.6	0
10	A Metasurface-Based, Ultrathin, Dual-Band, Linear-to-Circular, Reflective Polarization Converter: Easing uplinking and downlinking for wireless communication. IEEE Antennas and Propagation Magazine, 2021, 63, 100-110.	1.4	32
11	Equivalent Circuit Approach for Beam–Wave Interaction Analysis of MILO. IEEE Transactions on Plasma Science, 2021, 49, 2709-2717.	1.3	Ο
12	Study of the Beam–Wave Interaction Behavior of the Side-Coupled Cavity Structure. IEEE Transactions on Plasma Science, 2021, 49, 3793-3802.	1.3	1
13	A novel application of artificial neural network for recognition of target behind the wall. Microwave and Optical Technology Letters, 2020, 62, 152-167.	1.4	3
14	Tricontrollable pixelated metasurface for stopband for terahertz radiation. Journal of Electromagnetic Waves and Applications, 2020, 34, 2065-2078.	1.6	18
15	Systematic Time-Dependent, Multimode Simulation Study of a Ka-Band, Three-Cavity Second-Harmonic Gyroklystron Amplifier. IEEE Transactions on Plasma Science, 2020, 48, 3558-3564.	1.3	0
16	Analysis of Azimuthal Partition Periodic Disk-Loaded Coaxial Structure for Bifrequency MILO Using Equivalent Circuit Approach. IEEE Transactions on Plasma Science, 2020, 48, 3030-3039.	1.3	3
17	Microâ€Dopplerclassification of human movements using spectrogram spatial features and support vector machine. International Journal of RF and Microwave Computer-Aided Engineering, 2020, 30, e22264.	1.2	2
18	Localization of pulse-modulated surface-plasmon-polariton wave guided by a planar silicon/silver interface. Journal of Modern Optics, 2020, 67, 811-815.	1.3	0

#	Article	lF	CITATIONS
19	Electromagnetic analysis for the side-coupled cavity-type interaction structure for the linear accelerators. Journal of Electromagnetic Waves and Applications, 2020, 34, 524-538.	1.6	3
20	Design and Simulation of the Thermionic Emission-Based Reltron Oscillator. IEEE Transactions on Plasma Science, 2020, 48, 438-445.	1.3	10
21	Graphene-sandwich metasurface as a frequency shifter, switch, and isolator at terahertz frequencies. Optical Engineering, 2020, 59, .	1.0	6
22	Magnetically tunable metasurface comprising InAs and InSb pixels for absorbing terahertz radiation. Applied Optics, 2020, 59, 9673.	1.8	26
23	Electromagnetic analysis of ohmic quality factor of corrugated coaxial cavity structure for MILO. , 2020, , .		0
24	PIC simulation study of dielectric-filled S-band magnetically insulated line oscillator (MILO). , 2020, , .		1
25	Design analysis of a Tunable Tapered Metallic Baffle TM01 to TE11 HPM Mode Converter. , 2020, , .		0
26	Power and Efficiency Enhancement of the Reltron Using Dual RF Output Cavities. , 2020, , .		0
27	Behind the Wall Heartbeat Detection using SVD and MTI Filtering. , 2019, , .		1
28	Information Transfer by Near-Infrared Surface-Plasmon-Polariton Waves on Silver/Silicon Interfaces. Scientific Reports, 2019, 9, 12095.	3.3	6
29	Modeâ€matching analysis for characterization of the sectoral waveguide mode converters. Microwave and Optical Technology Letters, 2019, 61, 2619-2627.	1.4	0
30	Experimental investigation and design of sectoral waveguide <i>TM</i> ₀₁ to <i>TE</i> ₁₁ mode converter. Journal of Microwave Power and Electromagnetic Energy, 2019, 53, 276-295.	0.8	3
31	MILO Performance Improvement Study—An Equivalent Circuit Approach. IEEE Transactions on Plasma Science, 2019, 47, 4642-4649.	1.3	5
32	Implementation of a simple stepped frequency continuous wave target localization system comprising two antennas based on common region of sensing. International Journal of RF and Microwave Computer-Aided Engineering, 2019, 29, e21795.	1.2	3
33	Circular sectoral waveguideTM01toTE11mode converter. Microwave and Optical Technology Letters, 2019, 61, 1697-1701.	1.4	7
34	Investigation of a Low-Impedance Reltron as a Gigawatt HPM Source. IEEE Transactions on Electron Devices, 2019, 66, 1950-1953.	3.0	11
35	Notice of Removal: Design of Coaxial Waveguide TEM to Circular Waveguide TMOn Mode Transducer. , 2019, , .		0
36	Notice of Removal: PIC simulation study of dielectric-filled S-band magnetically insulated line oscillator (MILO). , 2019, , .		1

#	Article	IF	CITATIONS
37	PIC Simulation Study of L-band Bifrequency Magnetically Insulated Line Oscillator. , 2019, , .		1
38	Toward Information Transfer Around a Concave Corner by a Surface-Plasmon-Polariton Wave. IEEE Photonics Journal, 2019, 11, 1-12.	2.0	6
39	Pixel-based metaatom design of graphene-metasurface absorber for terahertz waves. , 2019, , .		1
40	Tricontrollable pixelated metasurface for absorbing terahertz radiation. Applied Optics, 2019, 58, 9614.	1.8	24
41	Graphene pixel-based polarization-insensitive metasurface for almost perfect and wideband terahertz absorption. Journal of the Optical Society of America B: Optical Physics, 2019, 36, F84.	2.1	48
42	Beam-wave Interaction Analysis of X-band Gridless Reltron. , 2019, , .		0
43	Transfer of information using surface-plasmon-polariton waves. , 2019, , .		1
44	Graphene pixel-based polarization-insensitive metasurface for almost perfect and wideband terahertz absorption: erratum. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1914.	2.1	4
45	PIC Simulation Study of the Formation Mechanism of Periodic Virtual Cathodes in the Reltron. IEEE Transactions on Plasma Science, 2018, 46, 518-523.	1.3	6
46	Through the Wall Human Signature Detection using Principle Component Analysis (PCA). , 2018, , .		4
47	An Ultra-thin Wideband Linear to Circular Polarization Converter using Metasurface. , 2018, , .		9
48	Simulation Investigation of S/Ku dual-band magnetically insulated line Oscillator. , 2018, , .		0
49	Effect of axial magnetic field tapering on whistler-pumped FEL amplifier in collective Raman regime operation. International Journal of Engineering and Technology(UAE), 2018, 7, 2044.	0.3	1
50	Information carried by a surface-plasmon-polariton wave across a gap. Journal of Applied Physics, 2018, 124, .	2.5	10
51	10.1063/1.5037919.1., 2018, , .		0
52	Design analysis and simulation study of an efficiency enhanced L-band MILO. Physics of Plasmas, 2017, 24, .	1.9	16
53	Electromagnetic simulation and experimental characterization of RF interaction structure of an S-band magnetically insulated line oscillator. Journal of Electromagnetic Waves and Applications, 2017, 31, 375-382.	1.6	4
54	Electron Beam Misalignment Study of MIG for 42 GHz, 200 kW Gyrotron. Frequenz, 2017, 71, .	0.9	4

#	Article	IF	CITATIONS
55	Study of virtual cathodes formation during beam-wave interaction in the reltron oscillator. Physics of Plasmas, 2017, 24, .	1.9	8
56	Advances and present trends in magnetically insulated line oscillator. Journal of Electromagnetic Waves and Applications, 2017, 31, 1864-1874.	1.6	8
57	Design of 180nm CMOS linear temperature sensor. , 2017, , .		3
58	Electromagnetic analysis of the HPM oscillator—Reltron. Physics of Plasmas, 2016, 23, 093118.	1.9	7
59	Time-dependent, multimode interaction analysis of the gyroklystron amplifier. Physics of Plasmas, 2016, 23, 083124.	1.9	3
60	Gyro-TWT Using a Metal PBG Waveguide as Its RF Circuit—Part II: PIC Simulation and Parametric Analysis. IEEE Transactions on Electron Devices, 2016, 63, 2125-2131.	3.0	1
61	Design and Simulation Study of the HPM Oscillator—Reltron. IEEE Transactions on Plasma Science, 2016, 44, 743-748.	1.3	21
62	Design Methodology and Beam–Wave Interaction Study of a Second-Harmonic \$D\$ -Band Gyroklystron Amplifier. IEEE Transactions on Plasma Science, 2016, 44, 2844-2851.	1.3	6
63	Design and Stability Studies of Second-Harmonic Gyro-TWT Amplifier Using Wedge-Shaped Lossy Ceramic Rod-Loaded Mode Selective RF Interaction Circuit. IEEE Transactions on Plasma Science, 2016, 44, 2340-2347.	1.3	3
64	Electron beam and RF wave interaction mechanism in the reltron oscillator. , 2016, , .		0
65	A compartive study of SVD and ICA for target detection in through-the-wall radar images. , 2016, , .		2
66	Oscillation Condition and Efficiency Analysis of the Reltron. IEEE Transactions on Plasma Science, 2016, 44, 1056-1062.	1.3	9
67	Equivalent Circuit Analysis of the Disk-Loaded Coaxial Structure for MILO. IEEE Transactions on Plasma Science, 2016, 44, 157-164.	1.3	6
68	Gyro-TWT Using a Metal PBG Waveguide as Its RF Circuit—Part I: Analysis and Design. IEEE Transactions on Electron Devices, 2016, 63, 2118-2124.	3.0	3
69	Nonlinear Analysis of a Gyroklystron Amplifier with Misaligned Electron Beam. Journal of Fusion Energy, 2016, 35, 289-298.	1.2	1
70	Beam-wave interaction study of a second harmonic gyroklystron amplifier. , 2015, , .		0
71	Beam wave interaction studies of gridless reltron. , 2015, , .		0
72	Universal filter design using transconductance CMOS inverter based CCII+. , 2015, , .		1

5

#	Article	IF	CITATIONS
73	Effects of electron beam parameters and velocity spread on radio frequency output of a photonic band gap cavity gyrotron oscillator. Physics of Plasmas, 2015, 22, 093102.	1.9	4
74	Time-dependent nonlinear analysis of gyro-TWT amplifier. , 2015, , .		0
75	Electromagnetic analysis of a coaxial metal disc loaded waveguiding structure. , 2015, , .		0
76	Particle-in-Cell simulation of gyro-TWT using a metal PBG circuit. , 2015, , .		1
77	Design and simulation of a gyroklystron amplifier. Physics of Plasmas, 2015, 22, 033111.	1.9	5
78	3-D PIC Simulation of Gyrotwystron Amplifier Using MAGIC. IEEE Transactions on Plasma Science, 2015, 43, 398-404.	1.3	1
79	Nonlinear Investigation and 3-D Particle Simulation of Second-Harmonic Gyro-TWT With a Mode Selective Circuit. IEEE Transactions on Electron Devices, 2015, 62, 1641-1647.	3.0	2
80	MULTIMODE ANALYSIS AND PIC SIMULATION OF A METAL PBG CAVITY GYROTRON OSCILLATOR. Progress in Electromagnetics Research M, 2014, 39, 11-18.	0.9	0
81	Cold measurement of a Ka-band Metal PBG waveguide. , 2014, , .		Ο
82	Beam-wave interaction behavior of a 35 GHz metal PBG cavity gyrotron. Physics of Plasmas, 2014, 21, 093101.	1.9	3
83	Evaluation of Cathode Heater Assembly for 42 GHz, 200 kW Gyrotron. Frequenz, 2014, 68, .	0.9	Ο
84	Multimode analysis of a W-band gyroklystron amplifier. , 2014, , .		0
85	Design and simulation of metal PBG waveguide mode launcher. , 2014, , .		2
86	Performance Improvement Study of Tapered Magnetically Insulated Line Oscillator Through Impedance Matching. IEEE Transactions on Plasma Science, 2014, 42, 2186-2192.	1.3	3
87	Relativistic Magnetron Performance Improvement Through Simultaneous Electric and Magnetic Fields Priming. Journal of Fusion Energy, 2013, 32, 575-579.	1.2	0
88	Magnetically Insulated Line Oscillator (MILO) Performance Study and its Parameter Optimization. IEEE Transactions on Plasma Science, 2013, 41, 2532-2538.	1.3	2
89	A Triode-Type Magnetron Injection Gun for a Dual Frequency Regime Gyrotron Operating at 42/84 GHz. IEEE Transactions on Plasma Science, 2013, 41, 3115-3121.	1.3	5
90	Relativistic Magnetron Priming by Loading the Resonators Through Dielectric Rods. IEEE Transactions on Plasma Science, 2013, 41, 3619-3623.	1.3	0

#	Article	IF	CITATIONS
91	Relativistic Magnetron Priming by Loading the Resonators Through Dielectric and Metal Rods. IEEE Transactions on Plasma Science, 2013, 41, 2987-2991.	1.3	4
92	Design of 42GHz gyrotron for Indian fusion tokamak system. Fusion Engineering and Design, 2013, 88, 2898-2906.	1.9	18
93	Design and simulation of 94 GHz metal PBG waveguide. , 2013, , .		0
94	Design and Simulation of Lossy Interaction Structure for Ka-Band Gyro-TWT. IEEE Transactions on Plasma Science, 2013, 41, 2264-2268.	1.3	3
95	Design Expressions for the Magnetically Insulated Line Oscillator. IEEE Transactions on Plasma Science, 2013, 41, 1549-1556.	1.3	15
96	Cold test of cylindrical open resonator for 42ÂGHz, 200ÂkW gyrotron. Sadhana - Academy Proceedings in Engineering Sciences, 2013, 38, 1347-1356.	1.3	1
97	Analysis and PIC simulation of a Gyrotron travelling wave tube amplifier. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2013, 12, 307-324.	0.7	4
98	PIC simulation study of a 35 GHz, 200 kW Gyroklystron. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2013, 12, 353-362.	0.7	5
99	Modeling and simulation of a 250 GHz metal PBG waveguide for gyrotron amplifier. , 2012, , .		0
100	Analysis of PBG structures using FDTD algorithm. , 2012, , .		0
101	Characterisation of resonant structure of relativistic magnetron. IET Microwaves, Antennas and Propagation, 2012, 6, 841.	1.4	3
102	Beam-wave interaction analysis of a magnetically insulated line oscillator. Physics of Plasmas, 2012, 19,	1.9	9
103	Three-Dimensional Particle-in-Cell Simulation of Fast Oscillation Startup and Efficiency Improvement in a Relativistic Magnetron With Electric Priming. IEEE Transactions on Plasma Science, 2012, 40, 2686-2692.	1.3	6
104	Design and analysis of metallic photonic band gap cavity for a Gyrotron. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2012, 11, 242-251.	0.7	5
105	FDTD ANALYSIS OF THE DISPERSION CHARACTERISTICS OF THE METAL PBG STRUCTURES. Progress in Electromagnetics Research B, 2012, 39, 71-88.	1.0	10
106	MULTIMODE BEHAVIOR OF A 42GHZ, 200KW GYROTRON. Progress in Electromagnetics Research B, 2012, 42, 75-91.	1.0	15
107	Electromagnetic Analysis of a Disk-Loaded Coaxial Waveguiding Structure for MILO. IEEE Transactions on Plasma Science, 2012, 40, 1032-1041.	1.3	14
108	Study of Output Performance of Partially Dielectric Loaded A6 Relativistic Magnetron. IEEE Transactions on Plasma Science, 2012, 40, 1070-1074.	1.3	14

#	Article	IF	CITATIONS
109	Measurement of dispersion and azimuthal interaction impedance of vane-loaded coaxial wave guiding structures. , 2011, , .		0
110	Design of CMOS based ultra wideband low noise amplifier using active shunt feedback technique. , 2011, , .		2
111	Energy calculation for magnetically insulated line oscillator. , 2011, , .		0
112	Performance improvement study of a relativistic magnetron using MAGIC-3D. , 2011, , .		1
113	Beam-wave interaction analysis of a 42 GHz, 200 kW CW gyrotron. , 2011, , .		0
114	Study of electron bunching in gyroklystrons. , 2011, , .		0
115	Cold cavity analysis for 35 GHz gyrotron interaction cavity using free space method. , 2011, , .		1
116	Analysis of two dimensional metal electromagnetic band gap (EBG) structure using finite difference time domain method. , 2011, , .		0
117	Initiatives in new generation high power microwave sources in India. , 2011, , .		0
118	Cold characterization of cylindrical open resonator for gyrotron. Infrared Physics and Technology, 2011, 54, 337-342.	2.9	6
119	A SIMPLE ANALYSIS OF HELICAL SLOW-WAVE STRUCTURE LOADED BY DIELECTRIC EMBEDDED METAL SEGMENTS FOR WIDEBAND TRAVELING-WAVE TUBES. Progress in Electromagnetics Research B, 2010, 20, 303-320.	1.0	5
120	P3-20: Analysis of dispersion and interaction impedance for vane-loaded coaxial waveguide structure. , 2010, , .		1
121	14.5: PIC simulation of a gyrotron-traveling-wave tube amplifier. , 2010, , .		2
122	P2-3: Exploration of a broadband 'semi-vane' helical SWS. , 2010, , .		1
123	Study of metallic photonic Band Gap cavity for high power microwave devices. , 2009, , .		0
124	Effect of inhomogeneous dispersion shaping of a helical SWS on the backward-wave oscillation criterion. , 2009, , .		2
125	Dispersion analysis of two dimensional metallic photonic band gap structures. , 2009, , .		0

1

#	Article	IF	CITATIONS
127	RF Behavior of a 200-kW CW Gyrotron. IEEE Transactions on Plasma Science, 2008, 36, 631-636.	1.3	16
128	A Simple Algorithm for Large-Signal Analysis of a Gyro-TWT. , 2007, , .		1
129	Eigenmodes and Ohmic quality factor of a tapered cavity resonator. , 2007, , .		О
130	Analysis of ohmic quality factor for the Azimuthally Symmetrical TE <inf>03</inf> -mode 42GHz gyrotron cavity. , 2007, , .		1
131	Parameters to Define the Electron Beam Trajectory of a Double-Tapered Disc-Loaded Wideband Gyro-TWT in Profiled Magnetic Field. Journal of Infrared, Millimeter and Terahertz Waves, 2007, 28, 443-449.	0.6	2
132	Analysis of a tapered disc-loaded waveguide for a wideband gyro-TWT. IEEE Transactions on Plasma Science, 2006, 34, 541-546.	1.3	8
133	Exploration of a double-tapered disc-loaded circular waveguide for a wideband gyro-TWT. IEEE Electron Device Letters, 2006, 27, 194-197.	3.9	8
134	Analysis of a Disc-Loaded-Coaxial Waveguide for Wideband and High-Gain Gyro-TWTs. , 2006, , .		0
135	Analysis of a corrugated coaxial waveguide resonator for mode rarefaction in a gyrotron. IEEE Transactions on Plasma Science, 2005, 33, 1024-1030.	1.3	14
136	Analysis of a Disc-Loaded Circular Waveguide for Interaction Impedance of a Gyrotron Amplifier. Journal of Infrared, Millimeter and Terahertz Waves, 2005, 26, 1093-1110.	0.6	11
137	Modelling of axially periodic circular waveguide with combined dielectric and metal loading. Journal Physics D: Applied Physics, 2005, 38, 3523-3529.	2.8	23
138	Analysis of a circular waveguide loaded with thick annular metal discs for wide-band gyro-TWTs. IEEE Transactions on Plasma Science, 2005, 33, 1358-1365.	1.3	25
139	ANALYSIS OF A COAXIAL WAVEGUIDE CORRUGATED WITH WEDGE-SHAPED RADIAL VANES CONSIDERING AZIMUTHAL HARMONIC EFFECTS. Progress in Electromagnetics Research, 2004, 47, 297-312.	4.4	21
140	Analytical Approaches to a Disc-Loaded Cylindrical Waveguide for Potential Application in Wide-band Gyro-TWTs. IEEE Transactions on Plasma Science, 2004, 32, 2144-2151.	1.3	21
141	Analysis of a Vane-Loaded Gyro-TWT for the Gain-Frequency Response. IEEE Transactions on Plasma Science, 2004, 32, 2130-2138.	1.3	12
142	Analysis of a Gyro-TWT in a Cylindrical Waveguide with a Dielectric Lining on its Wall. IETE Technical Review (Institution of Electronics and Telecommunication Engineers, India), 2002, 19, 77-83.	3.2	0
143	A heuristic analysis for an inhomogeneously loaded tape helix used in a practical travelling wave tube. International Journal of Electronics, 2001, 88, 197-213.	1.4	2
144	Space-Harmonic Effects in Helical Slow-Wave Structure — an Equivalent Circuit Analysis. Progress in Electromagnetics Research, 2001, 30, 85-104.	4.4	5

#	Article	IF	CITATIONS
145	Control of IM3 distortion in helix TWTs by harmonic injection-an Eulerian hydrodynamical study. IEEE Transactions on Electron Devices, 2001, 48, 62-67.	3.0	24
146	Analysis of a tapered vane loaded broad-band gyro-TWT. IEEE Transactions on Plasma Science, 2001, 29, 439-444.	1.3	32
147	Harnessing of the Axial Kinetic Electron Energy of a Large-Orbit Gyrotron by an Assistant Azimuthal Background Magnetic Field. IETE Technical Review (Institution of Electronics and Telecommunication) Tj ETQq1	1 0372843	14 n <mark>g</mark> BT /Over
148	Control of the gain-frequency response of a vane-loaded gyro-TWT by beam and magnetic field parameters. Microwave and Optical Technology Letters, 2000, 24, 140-145.	1.4	11
149	Two-stage vane loading of gyro-TWTs for high gains and bandwidths. Microwave and Optical Technology Letters, 2000, 27, 210-213.	1.4	4
150	Analysis of a large-orbit gyrotron in a coaxial waveguide under assistant background fields. IEEE Transactions on Electron Devices, 2000, 47, 634-642.	3.0	4
151	Waveguide Cross Section and Background Magnetic Field Tapers for Broadbanding a Gyro-TWT. Journal of Infrared, Millimeter and Terahertz Waves, 2000, 21, 1255-1267.	0.6	1
152	Harmonic injection effects in backed-off helix travelling-wave tubes. A study by Eulerian analysis. International Journal of Electronics, 2000, 87, 89-97.	1.4	5
153	Space-Harmonic Effects in Helical Slow-Wave Structure - an Equivalent Circuit Analysis - Abstract. Journal of Electromagnetic Waves and Applications, 2000, 14, 1083-1085.	1.6	6
154	Complex permittivity and permeability measurement using a rectangular waveguide. Microwave and Optical Technology Letters, 2000, 27, 180-182.	1.4	0
155	Twoâ€stage vane loading of gyroâ€TWTs for high gains and bandwidths. Microwave and Optical Technology Letters, 2000, 27, 210-213.	1.4	0
156	Analysis of an azimuthally periodic vane-loaded cylindrical waveguide for a gyro-travelling-wave tube. International Journal of Electronics, 1999, 86, 1463-1479.	1.4	22
157	Nonlinear Eulerian Analysis of Harmonic Generation in Traveling-Wave Tubes. Journal of Infrared, Millimeter and Terahertz Waves, 1999, 20, 483-490.	0.6	3
158	Nonlinear Eulerian hydrodynamical analysis of helix traveling-wave tubes for harmonic generation and its control. IEEE Transactions on Electron Devices, 1999, 46, 420-426.	3.0	18
159	A simple Eulerian analysis of IM3 distortion in helix traveling-wave tubes. Microwave and Optical Technology Letters, 1999, 22, 405-408.	1.4	1
160	Second-Order Nonlinear Eulerian Analysis of a Travelling-Wave Tube Amplifier. IETE Journal of Research, 1999, 45, 39-48.	2.6	2
161	A simple Eulerian analysis of IM3 distortion in helix travelingâ€wave tubes. Microwave and Optical Technology Letters, 1999, 22, 405-408.	1.4	0
162	Nonlinear Eulerian hydrodynamical analysis of helix traveling-wave tubes. IEEE Transactions on Electron Devices, 1998, 45, 2055-2062.	3.0	19

PRADIP K JAIN

#	Article	lF	CITATIONS
163	Fast-Wave Analysis of an Inhomogeneously-Loaded Helix Enclosed in a Cylindrical Waveguide. Journal of Electromagnetic Waves and Applications, 1998, 12, 191-198.	1.6	1
164	Eulerian analysis for harmonic generation and its control in a helix travelling-wave tube. International Journal of Electronics, 1998, 85, 377-395.	1.4	12
165	Fast-Wave Analysis of an Inhomogeneously- Loaded Helix Enclosed in a Cylindrical Waveguide. Progress in Electromagnetics Research, 1998, 18, 19-43.	4.4	8
166	Role of Helix Thickness in the Field Analysis and Characterisation of the Slow-Wave Structure of a Broadband TWT. IETE Technical Review (Institution of Electronics and Telecommunication Engineers,) Tj ETQq0 C) 03:gBT /O	westlock 10 Tf
167	Rigorous tape analysis of inhomogeneously-loaded helical slow-wave structures. IEEE Transactions on Electron Devices, 1997, 44, 1158-1168.	3.0	49
168	Nonresonant perturbation measurements on dispersion and interaction impedance characteristics of helical slow-wave structures. IEEE Transactions on Microwave Theory and Techniques, 1997, 45, 1585-1593.	4.6	28
169	Hybrid-mode helix-loading effects on gyro-travelling-wave tubes. International Journal of Electronics, 1997, 82, 663-676.	1.4	14
170	Analysis of an anisotropically loaded helix in the fast-wave regime for gyro-traveling-wave amplifiers. Microwave and Optical Technology Letters, 1997, 14, 52-56.	1.4	1
171	Nonresonant perturbation measurement on dispersion characteristics of a fast-wave cylindrical waveguide. Microwave and Optical Technology Letters, 1997, 15, 216-219.	1.4	1
172	Third-order saturation effects in a helix traveling-wave tube under Eulerian approximations. Microwave and Optical Technology Letters, 1997, 16, 345-349.	1.4	7
173	Analytical Exploration of New Tapered-Geometry Dielectric- Supported Helix Slow-Wave Structures for Broadband TWT's. Progress in Electromagnetics Research, 1997, 15, 63-85.	4.4	11
174	Analysis of an anisotropically loaded helix in the fastâ€wave regime for gyroâ€travelingâ€wave amplifiers. Microwave and Optical Technology Letters, 1997, 14, 52-56.	1.4	0
175	Analytical exploration of new tapered-geometry dielectric-supported helix slow-wave structures for broadband TWTs - Summary. Journal of Electromagnetic Waves and Applications, 1996, 10, 1217-1222.	1.6	6

176	Modified field analysis of inhomogeneously loaded helical slow-wave structures for TWTs. International Journal of Electronics, 1996, 81, 101-112.	1.4	9
177	Amplification in Gyro-Travelling-Wave Tubes—Dispersion Relation and Gain-Bandwidth Characteristics. IETE Technical Review (Institution of Electronics and Telecommunication Engineers,) Tj ETQq1 1 C). 73824 314 r	rgƁT /Over
178	Effects of circuit loss and space charge in gyro-travelling-wave tubes. Journal of Infrared, Millimeter and Terahertz Waves, 1996, 17, 1507-1517.	0.6	0
179	Broadbanding of a gyro-TWT by dielectric-loading through dispersion shaping. IEEE Transactions on Electron Devices, 1996, 43, 2290-2299.	3.0	40

180Two-stage dielectric-loading for broadbanding a gyro-TWT. IEEE Electron Device Letters, 1996, 17,
303-305.3.921

#	Article	IF	CITATIONS
181	A Review on Some Aspects of a Gyro-TWT. IETE Journal of Research, 1994, 40, 3-9.	2.6	1
182	Analytical Approaches to the Study of Helical Slow-Wave Structures for Broadband TWTs. IETE Technical Review (Institution of Electronics and Telecommunication Engineers, India), 1993, 10, 369-378.	3.2	2
183	A Simple Model for Anisotropic Loading of a Vane-Loaded Helix for Broad-Band Travelling-Wave Tubes. IETE Journal of Research, 1993, 39, 387-390.	2.6	0
184	Simplified tape model of arbitrarily-loaded helical slow-wave structures of a travelling-wave tube. IEE Proceedings H: Microwaves, Antennas and Propagation, 1992, 139, 347.	0.2	9
185	Evaluation of Pierce's small-signal parameters of helix, travelling-wave tubes for gain calculation. Journal Physics D: Applied Physics, 1992, 25, 542-547.	2.8	3
186	The inhomogeneous dielectric loading effects of practical helix supports on the interaction impedance of the slow-wave structure of a TWT. IEEE Transactions on Electron Devices, 1992, 39, 727-733.	3.0	28
187	A theory of the attenuator-coated helical slow-wave structure of a traveling-wave tube. IEEE Transactions on Electron Devices, 1988, 35, 1750-1757.	3.0	13
188	The effect of conductivity losses on propagation through the helical slow-wave structure of a traveling-wave tube. IEEE Transactions on Electron Devices, 1988, 35, 549-558.	3.0	29
189	Effect of the finite thickness of the helix wire on the characteristics of the helical slow-wave structure of a traveling-wave tube. IEEE Transactions on Electron Devices, 1987, 34, 1209-1213.	3.0	27
190	The inhomogeneous loading effects of practical dielectric supports for the helical slow-wave structure of a TWT. IEEE Transactions on Electron Devices, 1987, 34, 2643-2648.	3.0	48
191	Propagation Characteristics of Semiconductor Loaded Waveguide with Transverse Magnetic Field. IETE Journal of Research, 1973, 19, 695-696.	2.6	0
192	Deep neural network-based target separation from mixed micro-Doppler signature of multiple moving targets. Journal of Electromagnetic Waves and Applications, 0, , 1-14.	1.6	0
193	A Novel Technique for Contrast Target Detection in Through-the-Wall Radar Images. Journal of Electromagnetic Engineering and Science, 0, , .	1.8	2