Yuan Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2821490/publications.pdf Version: 2024-02-01

VIIAN CAO

#	Article	IF	CITATIONS
1	Unrecognized role of humic acid as a reductant in accelerating fluoroquinolones oxidation by aqueous permanganate. Chinese Chemical Letters, 2022, 33, 447-451.	4.8	11
2	Liquid-liquid extraction combined with online cleanup for the simultaneous determination of PAHs by GC–MS/MS and their hydroxylated metabolites by LC-MS/MS in human fingernails. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2022, 1188, 123057.	1.2	8
3	Transformation mechanisms of iopamidol by iron/sulfite systems: Involvement of multiple reactive species and efficiency in real water. Journal of Hazardous Materials, 2022, 426, 128114.	6.5	6
4	Formation mechanism and control strategies of N-nitrosodimethylamine (NDMA) formation during ozonation. Science of the Total Environment, 2022, 823, 153679.	3.9	16
5	Identification and occurrence of TBBPA and its debromination and O-methylation transformation products in sediment, fish and whelks from a typical e–waste dismantling site. Science of the Total Environment, 2022, 833, 155249.	3.9	6
6	Hydroxylamine driven advanced oxidation processes for water treatment: A review. Chemosphere, 2021, 262, 128390.	4.2	51
7	A comparison study of levofloxacin degradation by peroxymonosulfate and permanganate: Kinetics, products and effect of quinone group. Journal of Hazardous Materials, 2021, 403, 123834.	6.5	36
8	Enhanced transformation of organic pollutants by mild oxidants in the presence of synthetic or natural redox mediators: A review. Water Research, 2021, 189, 116667.	5.3	29
9	Enhanced peroxymonosulfate activation via complexed Mn(II): A novel non-radical oxidation mechanism involving manganese intermediates. Water Research, 2021, 193, 116856.	5.3	97
10	Formation of nitrosated and nitrated aromatic products of concerns in the treatment of phenols by the combination of peroxymonosulfate and hydroxylamine. Chemosphere, 2021, 282, 131057.	4.2	7
11	Relative contribution of ferryl ion species (Fe(IV)) and sulfate radical formed in nanoscale zero valent iron activated peroxydisulfate and peroxymonosulfate processes. Water Research, 2020, 172, 115504.	5.3	219
12	Quantitative evaluation of relative contribution of high-valent iron species and sulfate radical in Fe(VI) enhanced oxidation processes via sulfur reducing agents activation. Chemical Engineering Journal, 2020, 387, 124077.	6.6	43
13	Formation and control of bromate in sulfate radical-based oxidation processes for the treatment of waters containing bromide: A critical review. Water Research, 2020, 176, 115725.	5.3	56
14	Are free radicals actually responsible for enhanced oxidation of contaminants by Cr(VI) in the presence of bisulfite?. Chemosphere, 2020, 248, 126000.	4.2	8
15	A novel strategy using peroxymonosulfate to control the formation of iodinated aromatic products in treatment of phenolic compounds by permanganate. Environmental Science: Water Research and Technology, 2019, 5, 1515-1522.	1.2	6
16	Oxidation kinetics of anilines by aqueous permanganate and effects of manganese products: Comparison to phenols. Chemosphere, 2019, 235, 104-112.	4.2	23
17	Further understanding the involvement of Fe(IV) in peroxydisulfate and peroxymonosulfate activation by Fe(II) for oxidative water treatment. Chemical Engineering Journal, 2019, 371, 842-847.	6.6	194
18	Further insights into the combination of permanganate and peroxymonosulfate as an advanced oxidation process for destruction of aqueous organic contaminants. Chemosphere, 2019, 228, 602-610.	4.2	29

Yuan Gao

#	Article	IF	CITATIONS
19	New Insights into the Combination of Permanganate and Bisulfite as a Novel Advanced Oxidation Process: Importance of High Valent Manganese-Oxo Species and Sulfate Radical. Environmental Science & Technology, 2019, 53, 3689-3696.	4.6	135
20	Oxidation of methylparaben (MeP) and pâ€hydroxybenzoic acid (p-HBA) by manganese dioxide (MnO2) and effects of iodide: Efficiency, products, and toxicity. Science of the Total Environment, 2019, 661, 670-677.	3.9	23
21	Does Soluble Mn(III) Oxidant Formed in Situ Account for Enhanced Transformation of Triclosan by Mn(VII) in the Presence of Ligands?. Environmental Science & Technology, 2018, 52, 4785-4793.	4.6	76
22	Is Sulfate Radical Really Generated from Peroxydisulfate Activated by Iron(II) for Environmental Decontamination?. Environmental Science & amp; Technology, 2018, 52, 11276-11284.	4.6	517
23	Unrecognized role of bisulfite as Mn(III) stabilizing agent in activating permanganate (Mn(VII)) for enhanced degradation of organic contaminants. Chemical Engineering Journal, 2017, 327, 418-422.	6.6	66
24	Transformation of Flame Retardant Tetrabromobisphenol A by Aqueous Chlorine and the Effect of Humic Acid. Environmental Science & Technology, 2016, 50, 9608-9618.	4.6	62
25	Understanding the Role of Manganese Dioxide in the Oxidation of Phenolic Compounds by Aqueous Permanganate. Environmental Science & Technology, 2015, 49, 520-528.	4.6	114
26	Oxidation of Flame Retardant Tetrabromobisphenol A by Aqueous Permanganate: Reaction Kinetics, Brominated Products, and Pathways. Environmental Science & Technology, 2014, 48, 615-623.	4.6	90
27	Oxidation of Bromophenols and Formation of Brominated Polymeric Products of Concern during Water Treatment with Potassium Permanganate. Environmental Science & Technology, 2014, 48, 10850-10858.	4.6	125