
Andréa C Fogaça

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2821368/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antimicrobial Activity of a Bovine Hemoglobin Fragment in the Tick Boophilus microplus. Journal of Biological Chemistry, 1999, 274, 25330-25334.	1.6	170
2	Cysteine-rich antimicrobial peptides of the cattle tick Boophilus microplus: isolation, structural characterization and tissue expression profile. Developmental and Comparative Immunology, 2004, 28, 191-200.	1.0	119
3	Ixodidin, a novel antimicrobial peptide from the hemocytes of the cattle tick Boophilus microplus with inhibitory activity against serine proteinases. Peptides, 2006, 27, 667-674.	1.2	116
4	Acanthoscurrin: a novel glycine-rich antimicrobial peptide constitutively expressed in the hemocytes of the spider Acanthoscurria gomesiana. Developmental and Comparative Immunology, 2003, 27, 781-791.	1.0	93
5	Analysis of the Salivary Gland Transcriptome of Unfed and Partially Fed Amblyomma sculptum Ticks and Descriptive Proteome of the Saliva. Frontiers in Cellular and Infection Microbiology, 2017, 7, 476.	1.8	79
6	Tick Immune System: What Is Known, the Interconnections, the Gaps, and the Challenges. Frontiers in Immunology, 2021, 12, 628054.	2.2	51
7	The Iron Stimulon of <i>Xylella fastidiosa</i> Includes Genes for Type IV Pilus and Colicin V-Like Bacteriocins. Journal of Bacteriology, 2008, 190, 2368-2378.	1.0	44
8	Exploring the immune signalling pathway-related genes of the cattle tick Rhipicephalus microplus: From molecular characterization to transcriptional profile upon microbial challenge. Developmental and Comparative Immunology, 2016, 59, 1-14.	1.0	43
9	Characterization of proteinases from the midgut of Rhipicephalus (Boophilus) microplus involved in the generation of antimicrobial peptides. Parasites and Vectors, 2010, 3, 63.	1.0	42
10	Natural Blood Feeding and Temperature Shift Modulate the Global Transcriptional Profile of Rickettsia rickettsii Infecting Its Tick Vector. PLoS ONE, 2013, 8, e77388.	1.1	34
11	Effects of the antimicrobial peptide gomesin on the global gene expression profile, virulence and biofilm formation ofXylella fastidiosa. FEMS Microbiology Letters, 2010, 306, 152-159.	0.7	25
12	Virulence genes of Rickettsia rickettsii are differentially modulated by either temperature upshift or blood-feeding in tick midgut and salivary glands. Parasites and Vectors, 2016, 9, 331.	1.0	23
13	The Distinct Transcriptional Response of the Midgut of Amblyomma sculptum and Amblyomma aureolatum Ticks to Rickettsia rickettsii Correlates to Their Differences in Susceptibility to Infection. Frontiers in Cellular and Infection Microbiology, 2017, 7, 129.	1.8	23
14	A physiologic overview of the organ-specific transcriptome of the cattle tick Rhipicephalus microplus. Scientific Reports, 2020, 10, 18296.	1.6	23
15	The transcription factor Relish controls Anaplasma marginale infection in the bovine tick Rhipicephalus microplus. Developmental and Comparative Immunology, 2017, 74, 32-39.	1.0	19
16	The Transcriptome of the Salivary Glands of Amblyomma aureolatum Reveals the Antimicrobial Peptide Microplusin as an Important Factor for the Tick Protection Against Rickettsia rickettsii Infection. Frontiers in Physiology, 2019, 10, 529.	1.3	18
17	Comparative analysis of the midgut microbiota of two natural tick vectors of Rickettsia rickettsii. Developmental and Comparative Immunology, 2020, 106, 103606.	1.0	13
18	<i>Rickettsia</i> and Vector Biodiversity of Spotted Fever Focus, Atlantic Rain Forest Biome, Brazil. Emerging Infectious Diseases, 2014, 20, 498-500.	2.0	8

#	Article	IF	CITATIONS
19	Culex quinquefasciatus Storage Proteins. PLoS ONE, 2013, 8, e77664.	1.1	8
20	Clinical and serological evaluation of capybaras (Hydrochoerus hydrochaeris) successively exposed to an Amblyomma sculptum-derived strain of Rickettsia rickettsii. Scientific Reports, 2020, 10, 924.	1.6	7
21	Comparative Analysis of Infection by Rickettsia rickettsii Sheila Smith and Taiaçu Strains in a Murine Model. Pathogens, 2020, 9, 744.	1.2	5