Xuehai Yan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2821110/xuehai-yan-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

212	14,915	67	118
papers	citations	h-index	g-index
234	17,470 ext. citations	10.6	7.23
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
212	Supramolecular cancer photoimmunotherapy based on precise peptide self-assembly design <i>Chemical Communications</i> , 2022 ,	5.8	4
211	An unconventional nano-AIEgen originating from a natural plant polyphenol for multicolor bioimaging. <i>Cell Reports Physical Science</i> , 2022 , 3, 100745	6.1	3
210	Functional Nanomaterials Based on Self-Assembly of Endogenic NIR-Absorbing Pigments for Diagnostic and Therapeutic Applications <i>Small Methods</i> , 2022 , e2101359	12.8	2
209	Phthalocyanine-Assembled "One-For-Two" Nanoparticles for Combined Photodynamic-Photothermal Therapy of Multidrug-Resistant Bacteria <i>ACS Applied Materials & Interfaces</i> , 2022 ,	9.5	3
208	Peptide-Based Nanoarchitectonics: Self-Assembly and Biological Applications. <i>Nanostructure Science and Technology</i> , 2022 , 165-177	0.9	
207	Reactivity Differences Enable ROS for Selective Ablation of Bacteria <i>Angewandte Chemie - International Edition</i> , 2022 ,	16.4	5
206	Amino Acid-Encoded Supramolecular Photothermal Nanomedicine for Enhanced Cancer Therapy <i>Advanced Materials</i> , 2022 , e2200139	24	8
205	Multicomponent Coassembled Nanodrugs Based on Ovalbumin, Pheophorbide a and Zn2+ for in vitro Photodynamic Therapy 2022 , 100010		
204	Coordination-assembled myricetin nanoarchitectonics for sustainably scavenging free radicals <i>Beilstein Journal of Nanotechnology</i> , 2022 , 13, 284-291	3	O
203	Tailoring supramolecular short peptide nanomaterials for antibacterial applications. <i>Coordination Chemistry Reviews</i> , 2022 , 460, 214481	23.2	3
202	Acid-Responsive Nanoporphyrin Evolution for Near-Infrared Fluorescence-Guided Photo-Ablation of Biofilm <i>Advanced Healthcare Materials</i> , 2022 , e2200529	10.1	2
201	Phthalocyanine-Triggered Helical Dipeptide Nanotubes with Intense Circularly Polarized Luminescence. <i>Small</i> , 2021 , e2104438	11	1
200	Metal-Free Nanoassemblies of Water-Soluble Photosensitizer and Adenosine Triphosphate for Efficient and Precise Photodynamic Cancer Therapy. <i>ACS Nano</i> , 2021 , 15, 4979-4988	16.7	16
199	Biomimetic Nanozymes Based on Coassembly of Amino Acid and Hemin for Catalytic Oxidation and Sensing of Biomolecules. <i>Small</i> , 2021 , 17, e2008114	11	40
198	Supramolecular Nanofibrils Formed by Coassembly of Clinically Approved Drugs for Tumor Photothermal Immunotherapy. <i>Advanced Materials</i> , 2021 , 33, e2100595	24	34
197	Assembly Induced Super-Large Red-Shifted Absorption: The Burgeoning Field of Organic Near-Infrared Materials. <i>CCS Chemistry</i> , 2021 , 3, 678-693	7.2	14
196	Redox-responsive nanoparticles self-assembled from porphyrin-betulinic acid conjugates for chemo- and photodynamic therapy. <i>Dyes and Pigments</i> , 2021 , 190, 109307	4.6	1

(2020-2021)

-	195	Supramolecular Nanodrugs Based on Covalent Assembly of Therapeutic Peptides toward In Vitro Synergistic Anticancer Therapy. <i>ChemMedChem</i> , 2021 , 16, 2381-2385	3.7	3
-	194	A Bubble-Assisted Approach for Patterning Nanoscale Molecular Aggregates. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 16547-16553	16.4	4
-	193	A Bubble-Assisted Approach for Patterning Nanoscale Molecular Aggregates. <i>Angewandte Chemie</i> , 2021 , 133, 16683-16689	3.6	
-	192	Bio-inspired short peptide self-assembly: From particles to functional materials. <i>Particuology</i> , 2021 , 64, 14-14	2.8	2
-	191	Cyclic dipeptides: Biological activities and self-assembled materials. <i>Peptide Science</i> , 2021 , 113, e24202	3	8
:	190	Activatable supramolecular photosensitizers: advanced design strategies. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 1683-1693	7.8	12
-	189	Silver-incorporating peptide and protein supramolecular nanomaterials for biomedical applications. Journal of Materials Chemistry B, 2021 , 9, 4444-4458	7-3	9
-	188	Research on Business Environment Risk Governance Based on Occupational Claims: 1784 Cases of Food Safety Disputes. <i>Complexity</i> , 2021 , 2021, 1-8	1.6	
-	187	Self-assembled peptide nanoparticles for enhanced dark-field hyperspectral imaging at the cellular and invertebrate level. <i>Chemical Engineering Journal</i> , 2021 , 424, 130348	14.7	8
-	186	Supramolecular nanozymes based on peptide self-assembly for biomimetic catalysis. <i>Nano Today</i> , 2021 , 41, 101295	17.9	4
-	185	Self-assembling bile pigments for cancer diagnosis and therapy. <i>Aggregate</i> , 2021 , 2, 84-94	22.9	10
-	184	Coassembly-Induced Transformation of Dipeptide Amyloid-Like Structures into Stimuli-Responsive Supramolecular Materials. <i>ACS Nano</i> , 2020 , 14, 7181-7190	16.7	29
-	183	Porphyrin/Ionic-Liquid Co-assembly Polymorphism Controlled by Liquid-Liquid Phase Separation. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 17456-17460	16.4	14
-	182	Self-Assembling Proteins for Design of Anticancer Nanodrugs. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 1405-1419	4.5	8
-	181	Peptide assembly assisted triplet-triplet annihilation photon upconversion in non-deoxygenated water. <i>Biomaterials Science</i> , 2020 , 8, 3072-3077	7.4	3
	180	Porphyrin/Ionic-Liquid Co-assembly Polymorphism Controlled by Liquid I iquid Phase Separation. <i>Angewandte Chemie</i> , 2020 , 132, 17609-17613	3.6	6
1	179	Supramolecular Phthalocyanine Assemblies for Improved Photoacoustic Imaging and Photothermal Therapy. <i>Angewandte Chemie</i> , 2020 , 132, 8708-8712	3.6	16
	178	Supramolecular Phthalocyanine Assemblies for Improved Photoacoustic Imaging and Photothermal Therapy. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 8630-8634	16.4	53

177	Multifunctional Antimicrobial Biometallohydrogels Based on Amino Acid Coordinated Self-Assembly. <i>Small</i> , 2020 , 16, e1907309	11	99
176	Deciphering the structure-property relationship in coumarin-based supramolecular organogel materials. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2020 , 597, 124744	5.1	5
175	Coordination self-assembly of natural flavonoids into robust nanoparticles for enhanced in vitro chemo and photothermal cancer therapy. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2020 , 598, 124805	5.1	12
174	Dipeptide Self-assembled Hydrogels with Shear-Thinning and Instantaneous Self-healing Properties Determined by Peptide Sequences. <i>ACS Applied Materials & Determined Sequences</i> , 2020, 12, 21433-21440	9.5	23
173	Minimal metallo-nanozymes constructed through amino acid coordinated self-assembly for hydrolase-like catalysis. <i>Chemical Engineering Journal</i> , 2020 , 394, 124987	14.7	17
172	Supramolecular Photothermal Effects: A Promising Mechanism for Efficient Thermal Conversion. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 3793-3801	16.4	110
171	Supramolecular Photothermal Effects: A Promising Mechanism for Efficient Thermal Conversion. <i>Angewandte Chemie</i> , 2020 , 132, 3821-3829	3.6	31
170	Injectable self-assembled bola-dipeptide hydrogels for sustained photodynamic prodrug delivery and enhanced tumor therapy. <i>Journal of Controlled Release</i> , 2020 , 319, 344-351	11.7	23
169	Acid-Activatable Transmorphic Peptide-Based Nanomaterials for Photodynamic Therapy. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 20582-20588	16.4	59
168	Tumor microenvironment-oriented adaptive nanodrugs based on peptide self-assembly. <i>Chemical Science</i> , 2020 , 11, 8644-8656	9.4	29
167	Acid-Activatable Transmorphic Peptide-Based Nanomaterials for Photodynamic Therapy. <i>Angewandte Chemie</i> , 2020 , 132, 20763-20769	3.6	9
166	Supramolecular self-assembly: A facile way to fabricate protein and peptide nanomaterials 2020 , 3-21		O
165	Tunable Mechanical and Optoelectronic Properties of Organic Cocrystals by Unexpected Stacking Transformation from H- to J- and X-Aggregation. <i>ACS Nano</i> , 2020 , 14, 10704-10715	16.7	18
164	Tumor therapy based on self-assembling peptides nanotechnology. View, 2020, 1, 20200020	7.8	6
163	Supramolecular Immunotherapy of Cancer Based on the Self-Assembling Peptide Design. <i>Small Structures</i> , 2020 , 1, 2000068	8.7	25
162	Ferric Ion Driven Assembly of Catalase-like Supramolecular Photosensitizing Nanozymes for Combating Hypoxic Tumors. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 23228-23238	16.4	37
161	Ferric Ion Driven Assembly of Catalase-like Supramolecular Photosensitizing Nanozymes for Combating Hypoxic Tumors. <i>Angewandte Chemie</i> , 2020 , 132, 23428-23438	3.6	6
160	Supramolecular Nanodrugs Constructed by Self-Assembly of Peptide Nucleic Acid-Photosensitizer Conjugates for Photodynamic Therapy <i>ACS Applied Bio Materials</i> , 2020 , 3, 2-9	4.1	17

(2019-2020)

159	Self-Assembled Nanophotosensitizing Systems with Zinc(II) Phthalocyanine-Peptide Conjugates as Building Blocks for Targeted Chemo-Photodynamic Therapy ACS Applied Bio Materials, 2020 , 3, 5463-5	54 7 3	12
158	NIR Light-Driving Barrier-Free Group Rotation in Nanoparticles with an 88.3% Photothermal Conversion Efficiency for Photothermal Therapy. <i>Advanced Materials</i> , 2020 , 32, e1907855	24	171
157	Supramolecular Protein Nanodrugs with Coordination- and Heating-Enhanced Photothermal Effects for Antitumor Therapy. <i>Small</i> , 2019 , 15, e1905326	11	23
156	Hierarchically oriented organization in supramolecular peptide crystals. <i>Nature Reviews Chemistry</i> , 2019 , 3, 567-588	34.6	181
155	Cyclic dipeptide nanoribbons formed by dye-mediated hydrophobic self-assembly for cancer chemotherapy. <i>Journal of Colloid and Interface Science</i> , 2019 , 557, 458-464	9.3	14
154	High-tolerance crystalline hydrogels formed from self-assembling cyclic dipeptide. <i>Beilstein Journal of Nanotechnology</i> , 2019 , 10, 1894-1901	3	6
153	A self-assembly study of PNA-porphyrin and PNA-BODIPY hybrids in mixed solvent systems. <i>Nanoscale</i> , 2019 , 11, 3557-3566	7.7	27
152	One-step co-assembly method to fabricate photosensitive peptide nanoparticles for two-photon photodynamic therapy. <i>Chemical Communications</i> , 2019 , 55, 3191-3194	5.8	19
151	The Dominant Role of Oxygen in Modulating the Chemical Evolution Pathways of Tyrosine in Peptides: Dityrosine or Melanin. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 5872-5876	16.4	48
150	The Dominant Role of Oxygen in Modulating the Chemical Evolution Pathways of Tyrosine in Peptides: Dityrosine or Melanin. <i>Angewandte Chemie</i> , 2019 , 131, 5930-5934	3.6	5
149	Recent advances of self-assembling peptide-based hydrogels for biomedical applications. <i>Soft Matter</i> , 2019 , 15, 1704-1715	3.6	185
148	Self-assembling Collagen/Alginate hybrid hydrogels for combinatorial photothermal and immuno tumor therapy. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2019 , 577, 570-575	5.1	61
147	Stoichiometry-controlled secondary structure transition of amyloid-derived supramolecular dipeptide co-assemblies. <i>Communications Chemistry</i> , 2019 , 2,	6.3	22
146	Photoactive properties of supramolecular assembled short peptides. <i>Chemical Society Reviews</i> , 2019 , 48, 4387-4400	58.5	86
145	Metal-Ion Modulated Structural Transformation of Amyloid-Like Dipeptide Supramolecular Self-Assembly. <i>ACS Nano</i> , 2019 , 13, 7300-7309	16.7	71
144	Peptide-Based Supramolecular Nanodrugs as a New Generation of Therapeutic Toolboxes against Cancer. <i>Advanced Therapeutics</i> , 2019 , 2, 1900048	4.9	28
143	Peptide-modulated self-assembly as a versatile strategy for tumor supramolecular nanotheranostics. <i>Theranostics</i> , 2019 , 9, 3249-3261	12.1	38
142	A versatile cyclic dipeptide hydrogelator: Self-assembly and rheology in various physiological conditions. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2019 , 572, 259-265	5.1	31

Stable and optoelectronic dipeptide assemblies for power harvesting. Materials Today, 2019, 30, 10-16 21.8 141 Nanoarchitectonics for Biology 2019, 209-229 140 2 Self-Assembling Endogenous Biliverdin as a Versatile Near-Infrared Photothermal Nanoagent for 139 24 172 Cancer Theranostics. Advanced Materials, 2019, 31, e1900822 A cruciform phthalocyanine pentad-based NIR-II photothermal agent for highly efficient tumor 138 9.4 41 ablation. Chemical Science, 2019, 10, 8246-8252 Spatiotemporally Coupled Photoactivity of Phthalocyanine-Peptide Conjugate Self-Assemblies for 4.8 137 29 Adaptive Tumor Theranostics. Chemistry - A European Journal, 2019, 25, 13429-13435 Peptide-coordination self-assembly for the precise design of theranostic nanodrugs. Coordination 136 38 Chemistry Reviews, **2019**, 397, 14-27 Nucleation and Growth of Amino Acid and Peptide Supramolecular Polymers through Liquid-Liquid 16.4 122 135 Phase Separation. Angewandte Chemie - International Edition, 2019, 58, 18116-18123 Robust Photothermal Nanodrugs Based on Covalent Assembly of Nonpigmented Biomolecules for 134 9.5 35 Antitumor Therapy. ACS Applied Materials & Distriction (11, 41898-41905). Innenrilktitelbild: Nucleation and Growth of Amino Acid and Peptide Supramolecular Polymers 133 through Liquid Liquid Phase Separation (Angew. Chem. 50/2019). Angewandte Chemie, 2019, 131, 18463-38463 Nucleation and Growth of Amino Acid and Peptide Supramolecular Polymers through Liquid Liquid 3.6 132 37 Phase Separation. Angewandte Chemie, 2019, 131, 18284-18291 Kinetically Controlled Self-Assembly of Phthalocyanine Peptide Conjugate Nanofibrils Enabling 131 7.2 43 Superlarge Redshifted Absorption. CCS Chemistry, 2019, 1, 173-180 Nanodrugs: Supramolecular Protein Nanodrugs with Coordination- and Heating-Enhanced 130 11 Photothermal Effects for Antitumor Therapy (Small 52/2019). Small, 2019, 15, 1970286 Self-assembled injectable biomolecular hydrogels towards phototherapy. Nanoscale, 2019, 11, 22182-221.95 28 129 Covalently Assembled Dipeptide Nanoparticles with Adjustable Fluorescence Emission for 128 3.8 16 Multicolor Bioimaging. ChemBioChem, 2019, 20, 555-560 Photooxidase-Mimicking Nanovesicles with Superior Photocatalytic Activity and Stability Based on 3.6 8 127 Amphiphilic Amino Acid and Phthalocyanine Co-Assembly. Angewandte Chemie, 2019, 131, 2022-2026 Photooxidase-Mimicking Nanovesicles with Superior Photocatalytic Activity and Stability Based on 126 Amphiphilic Amino Acid and Phthalocyanine Co-Assembly. Angewandte Chemie - International 16.4 64 Edition, 2019, 58, 2000-2004 Self-Assembling Peptide-Based Nanoarchitectonics. Bulletin of the Chemical Society of Japan, 2019, 125 5.1 107 92, 70-79 Supramolecular Photothermal Nanomaterials as an Emerging Paradigm toward Precision Cancer 124 137 Therapy. Advanced Functional Materials, 2019, 29, 1806877

123	Coordination-assembled supramolecular nanoplatforms: structural modulation and theranostic applications. <i>Current Opinion in Biotechnology</i> , 2019 , 58, 45-52	11.4	18
122	Cross-Linking of Thiolated Paclitaxel-Oligo(p-phenylene vinylene) Conjugates Aggregates inside Tumor Cells Leads to "Chemical Locks" That Increase Drug Efficacy. <i>Advanced Materials</i> , 2018 , 30, 1704	8 88	42
121	Peptide-Based Hydrogels/Organogels: Assembly and Application 2018, 205-226		1
120	Regulating morphologies and near-infrared photothermal conversion of perylene bisimide via sequence-dependent peptide self-assembly. <i>Chemical Communications</i> , 2018 , 54, 2208-2211	5.8	17
119	Nanodrugs based on peptide-modulated self-assembly: Design, delivery and tumor therapy. <i>Current Opinion in Colloid and Interface Science</i> , 2018 , 35, 17-25	7.6	46
118	Charge-Induced Secondary Structure Transformation of Amyloid-Derived Dipeptide Assemblies from Esheet to Helix. <i>Angewandte Chemie</i> , 2018 , 130, 1553-1558	3.6	22
117	Crystalline Dipeptide Nanobelts Based on Solid-Solid Phase Transformation Self-Assembly and Their Polarization Imaging of Cells. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 10, 2368-2376	9.5	88
116	Charge-Induced Secondary Structure Transformation of Amyloid-Derived Dipeptide Assemblies from Esheet to Helix. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 1537-1542	16.4	148
115	Primitive Photosynthetic Architectures Based on Self-Organization and Chemical Evolution of Amino Acids and Metal Ions. <i>Advanced Science</i> , 2018 , 5, 1701001	13.6	28
114	Amino Acid Coordinated Self-Assembly. <i>Chemistry - A European Journal</i> , 2018 , 24, 755-761	4.8	45
113	Treatment of different parts of corn stover for high yield and lower polydispersity lignin extraction with high-boiling alkaline solvent. <i>Bioresource Technology</i> , 2018 , 249, 737-743	11	24
112	Antitumor Photodynamic Therapy Based on Dipeptide Fibrous Hydrogels with Incorporation of Photosensitive Drugs. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 2046-2052	5.5	54
111	Self-Assembly of Monomeric Hydrophobic Photosensitizers with Short Peptides Forming Photodynamic Nanoparticles with Real-Time Tracking Property and without the Need of Release in Vivo. ACS Applied Materials & Damp; Interfaces, 2018, 10, 28420-28427	9.5	34
110	Covalent Assembly of Amphiphilic Bola-Amino Acids into Robust and Biodegradable Nanoparticles for In Vitro Photothermal Therapy. <i>Chemistry - an Asian Journal</i> , 2018 , 13, 3526-3532	4.5	17
109	Smart Peptide-Based Supramolecular Photodynamic Metallo-Nanodrugs Designed by Multicomponent Coordination Self-Assembly. <i>Journal of the American Chemical Society</i> , 2018 , 140, 107	94-9 1 8	ož ⁶⁶
108	Amino-Acid-Mediated Biomimetic Formation of Light-Harvesting Antenna Capable of Hydrogen Evolution <i>ACS Applied Bio Materials</i> , 2018 , 1, 748-755	4.1	23
107	Self-Assembled Minimalist Multifunctional Theranostic Nanoplatform for Magnetic Resonance Imaging-Guided Tumor Photodynamic Therapy. <i>ACS Nano</i> , 2018 , 12, 8266-8276	16.7	141
106	Stimuli-responsive nanoparticles based on co-assembly of naturally-occurring biomacromolecules for in vitro photodynamic therapy. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2018 , 538, 795-801	5.1	61

105	An injectable dipeptide-fullerene supramolecular hydrogel for photodynamic antibacterial therapy. Journal of Materials Chemistry B, 2018 , 6, 7335-7342	7.3	67
104	Amino Acid Coordination Driven Self-Assembly for Enhancing both the Biological Stability and Tumor Accumulation of Curcumin. <i>Angewandte Chemie</i> , 2018 , 130, 17330-17334	3.6	25
103	Amino Acid Coordination Driven Self-Assembly for Enhancing both the Biological Stability and Tumor Accumulation of Curcumin. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 17084-17088	16.4	133
102	Tunable Aggregation-Induced Emission of Tetraphenylethylene via Short Peptide-Directed Self-Assembly. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1600183	4.6	14
101	Biological Photothermal Nanodots Based on Self-Assembly of Peptide-Porphyrin Conjugates for Antitumor Therapy. <i>Journal of the American Chemical Society</i> , 2017 , 139, 1921-1927	16.4	562
100	Self-Assembled Peptide- and Protein-Based Nanomaterials for Antitumor Photodynamic and Photothermal Therapy. <i>Advanced Materials</i> , 2017 , 29, 1605021	24	474
99	Self-assembly of biomimetic light-harvesting complexes capable of hydrogen evolution. <i>Green Energy and Environment</i> , 2017 , 2, 58-63	5.7	46
98	Fabrication of Hierarchical Layer-by-Layer Assembled Diamond-based Core-Shell Nanocomposites as Highly Efficient Dye Absorbents for Wastewater Treatment. <i>Scientific Reports</i> , 2017 , 7, 44076	4.9	77
97	Water-Insoluble Photosensitizer Nanocolloids Stabilized by Supramolecular Interfacial Assembly towards Photodynamic Therapy. <i>Scientific Reports</i> , 2017 , 7, 42978	4.9	81
96	Multiscale simulations for understanding the evolution and mechanism of hierarchical peptide self-assembly. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 23614-23631	3.6	37
95	Engineering and delivery of nanocolloids of hydrophobic drugs. <i>Advances in Colloid and Interface Science</i> , 2017 , 249, 308-320	14.3	31
94	Tuning Supramolecular Structure and Functions of Peptide bola-Amphiphile by Solvent Evaporation-Dissolution. <i>ACS Applied Materials & Interfaces</i> , 2017 , 9, 21390-21396	9.5	24
93	Self-Assembled Zinc/Cystine-Based Chloroplast Mimics Capable of Photoenzymatic Reactions for Sustainable Fuel Synthesis. <i>Angewandte Chemie</i> , 2017 , 129, 7984-7988	3.6	30
92	Self-Assembled Zinc/Cystine-Based Chloroplast Mimics Capable of Photoenzymatic Reactions for Sustainable Fuel Synthesis. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 7876-7880	16.4	153
91	Synergistic in vivo photodynamic and photothermal antitumor therapy based on collagen-gold hybrid hydrogels with inclusion of photosensitive drugs. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2017 , 514, 155-160	5.1	78
90	Bio-inspired photosystem for green energy. <i>Green Energy and Environment</i> , 2017 , 2, 66	5.7	18
89	Trace Water as Prominent Factor to Induce Peptide Self-Assembly: Dynamic Evolution and Governing Interactions in Ionic Liquids. <i>Small</i> , 2017 , 13, 1702175	11	36
88	Peptide-Based Supramolecular Chemistry 2017 , 135-163		

(2016-2017)

Self-Assembled Injectable Peptide Hydrogels Capable of Triggering Antitumor Immune Response. <i>Biomacromolecules</i> , 2017 , 18, 3514-3523	6.9	115
Biomimetic Oxygen-Evolving Photobacteria Based on Amino Acid and Porphyrin Hierarchical Self-Organization. <i>ACS Nano</i> , 2017 , 11, 12840-12848	16.7	21
Peptide Supramolecular Self-Assembly:Structural Precise Regulation and Functionalization. <i>Acta Chimica Sinica</i> , 2017 , 75, 933	3.3	13
Enzyme-immobilized clay nanotube-chitosan membranes with sustainable biocatalytic activities. <i>Physical Chemistry Chemical Physics</i> , 2016 , 19, 562-567	3.6	28
Mimicking Primitive Photobacteria: Sustainable Hydrogen Evolution Based on Peptide-Porphyrin Co-Assemblies with a Self-Mineralized Reaction Center. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 12503-7	16.4	130
Multitriggered Tumor-Responsive Drug Delivery Vehicles Based on Protein and Polypeptide Coassembly for Enhanced Photodynamic Tumor Ablation. <i>Small</i> , 2016 , 12, 5936-5943	11	121
Preparation of multicompartment silica-gelatin nanoparticles with self-decomposability as drug containers for cancer therapy in vitro. <i>RSC Advances</i> , 2016 , 6, 70064-70071	3.7	5
Drug Delivery: Multitriggered Tumor-Responsive Drug Delivery Vehicles Based on Protein and Polypeptide Coassembly for Enhanced Photodynamic Tumor Ablation (Small 43/2016). <i>Small</i> , 2016 , 12, 5935-5935	11	5
Injectable Self-Assembled Dipeptide-Based Nanocarriers for Tumor Delivery and Effective In Vivo Photodynamic Therapy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 30759-30767	9.5	49
Solvothermally Mediated Self-Assembly of Ultralong Peptide Nanobelts Capable of Optical Waveguiding. <i>Small</i> , 2016 , 12, 2575-9	11	39
Simple Peptide-Tuned Self-Assembly of Photosensitizers towards Anticancer Photodynamic Therapy. <i>Angewandte Chemie</i> , 2016 , 128, 3088-3091	3.6	65
Trace Solvent as a Predominant Factor To Tune Dipeptide Self-Assembly. ACS Nano, 2016, 10, 2138-43	16.7	128
Co-Assembly of Graphene Oxide and Albumin/Photosensitizer Nanohybrids towards Enhanced Photodynamic Therapy. <i>Polymers</i> , 2016 , 8,	4.5	111
Co-Assembly of Heparin and Polypeptide Hybrid Nanoparticles for Biomimetic Delivery and Anti-Thrombus Therapy. <i>Small</i> , 2016 , 12, 4719-25	11	52
Simple Peptide-Tuned Self-Assembly of Photosensitizers towards Anticancer Photodynamic Therapy. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 3036-9	16.4	389
Peptide-Modulated Self-Assembly of Chromophores toward Biomimetic Light-Harvesting Nanoarchitectonics. <i>Advanced Materials</i> , 2016 , 28, 1031-43	24	221
An Injectable Self-Assembling Collagen-Gold Hybrid Hydrogel for Combinatorial Antitumor Photothermal/Photodynamic Therapy. <i>Advanced Materials</i> , 2016 , 28, 3669-76	24	566
Regulating Cell Apoptosis on Layer-by-Layer Assembled Multilayers of Photosensitizer-Coupled Polypeptides and Gold Nanoparticles. <i>Scientific Reports</i> , 2016 , 6, 26506	4.9	21
	Biomimetic Oxygen-Evolving Photobacteria Based on Amino Acid and Porphyrin Hierarchical Self-Organization. ACS Nano, 2017, 11, 12840-12848 Peptide Supramolecular Self-Assembly:Structural Precise Regulation and Functionalization. Acta Chimica Sinica, 2017, 75, 933 Enzyme-immobilized clay nanotube-chitosan membranes with sustainable biocatalytic activities. Physical Chemistry Chemical Physics, 2016, 19, 562-567 Mimicking Primitive Photobacteria: Sustainable Hydrogen Evolution Based on Peptide-Porphyrin Co-Assemblies with a Self-Mineralized Reaction Center. Angewandte Chemie - International Edition, 2016, 55, 12503-7 Multitriggered Tumor-Responsive Drug Delivery Vehicles Based on Protein and Polypeptide Coassembly for Enhanced Photodynamic Tumor Ablation. Small, 2016, 12, 5936-5943 Preparation of multicompartment silica-gelatin nanoparticles with self-decomposability as drug containers for cancer therapy in vitro. RSC Advances, 2016, 6, 70064-70071 Drug Delivery: Multitriggered Tumor-Responsive Drug Delivery Vehicles Based on Protein and Polypeptide Coassembly for Enhanced Photodynamic Tumor Ablation (Small 43/2016). Small, 2016, 12, 5935-5935 Injectable Self-Assembled Dipeptide-Based Nanocarriers for Tumor Delivery and Effective In Vivo Photodynamic Therapy. ACS Applied Materials & Deptide Nanobelts Capable of Optical Waveguiding. Small, 2016, 12, 2575-9 Simple Peptide-Tuned Self-Assembly of Photosensitizers towards Anticancer Photodynamic Therapy. Angewandte Chemie, 2016, 128, 3088-3091 Trace Solvent as a Predominant Factor To Tune Dipeptide Self-Assembly. ACS Nano, 2016, 10, 2138-43 Co-Assembly of Graphene Oxide and Albumin/Photosensitizer Nanohybrids towards Enhanced Photodynamic Therapy. Polymers, 2016, 8, 3088-3091 Trace Solvent as a Predominant Factor To Tune Dipeptide Self-Assembly of Delivery and Anti-Thrombus Therapy. Polymers, 2016, 8, 3088-3091 Trace Solvent as a Predominant Factor To Tune Dipeptide Self-Assembly of Chromophores towards Biomimetic Light-Harvesting Nanoarchitectonics. Advanc	Biomimetic Oxygen-Evolving Photobacteria Based on Amino Acid and Porphyrin Hierarchical Self-Organization. Acts Nano, 2017, 11, 12840-12848 1679 Peptide Supramolecular Self-Assembly: Structural Precise Regulation and Functionalization. Acta Chimica Sinica, 2017, 75, 933 33 Enzyme-immobilized clay nanotube-chitosan membranes with sustainable biocatalytic activities. Physical Chemistry Chemical Physics, 2016, 19, 562-567 Mimica Sinica, 2017, 75, 933 36 Mimicking Primitive Photobacteria: Sustainable Hydrogen Evolution Based on Peptide-Porphyrin Co-Assemblies with a Self-Mineralized Reaction Center. Angewandte Chemie-International Edition, 2016, 55, 12503-7 Multitriggered Tumor-Responsive Drug Delivery Vehicles Based on Protein and Polypeptide Coassembly for Enhanced Photodynamic Tumor Ablation. Small, 2016, 12, 5936-5943 11 Preparation of multicompartment silica-gelatin nanoparticles with self-decomposability as drug containers for cancer therapy in vitro. RSC Advances, 2016, 6, 70064-70071 37 Drug Delivery: Multitriggered Tumor-Responsive Drug Delivery Vehicles Based on Protein and Polypeptide Coassembly for Enhanced Photodynamic Tumor Ablation (Small 43/2016). Small, 2016, 12, 5935-5935 Injectable Self-Assembled Dipeptide-Based Nanocarriers for Tumor Delivery and Effective In Vivo Photodynamic Therapy. ACS Applied Materials Ramp; Interfaces, 2016, 8, 30759-30767 95 Simple Peptide-Tuned Self-Assembly of Photosensitizers towards Anticancer Photodynamic Therapy. Angewandte Chemie, 2016, 128, 3088-3091 17 Trace Solvent as a Predominant Factor To Tune Dipeptide Self-Assembly. ACS Nano, 2016, 10, 2138-43 16-7 Co-Assembly of Graphene Oxide and Albumin/Photosensitizers towards Anticancer Photodynamic Therapy. Polymers, 2016, 8, 3088-3091 12 Simple Peptide-Tuned Self-Assembly of Photosensitizers towards Anticancer Photodynamic Therapy. Small, 2016, 12, 4719-25 13 Simple Peptide-Tuned Self-Assembly of Chromophores toward Biomimetic Delivery and Anti-Thrombus Therapy. Small, 2016, 12, 4719-25 13 Simple Peptide-T

69	Interfacial Cohesion and Assembly of Bioadhesive Molecules for Design of Long-Term Stable Hydrophobic Nanodrugs toward Effective Anticancer Therapy. <i>ACS Nano</i> , 2016 , 10, 5720-9	16.7	122
68	Molecular and mesoscale mechanism for hierarchical self-assembly of dipeptide and porphyrin light-harvesting system. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 16738-47	3.6	29
67	Carrier-Free, Chemophotodynamic Dual Nanodrugs via Self-Assembly for Synergistic Antitumor Therapy. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 13262-9	9.5	229
66	Mimicking Primitive Photobacteria: Sustainable Hydrogen Evolution Based on Peptide P orphyrin Co-Assemblies with a Self-Mineralized Reaction Center. <i>Angewandte Chemie</i> , 2016 , 128, 12691-12695	3.6	22
65	Dipeptide concave nanospheres based on interfacially controlled self-assembly: from crescent to solid. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 30926-30930	3.6	9
64	Peptide self-assembly: thermodynamics and kinetics. <i>Chemical Society Reviews</i> , 2016 , 45, 5589-5604	58.5	559
63	Reduced Graphene Oxide-Based Silver Nanoparticle-Containing Composite Hydrogel as Highly Efficient Dye Catalysts for Wastewater Treatment. <i>Scientific Reports</i> , 2015 , 5, 11873	4.9	148
62	Facile and Scalable Preparation of Graphene Oxide-Based Magnetic Hybrids for Fast and Highly Efficient Removal of Organic Dyes. <i>Scientific Reports</i> , 2015 , 5, 12451	4.9	102
61	Preparation of Graphene Oxide-Based Hydrogels as Efficient Dye Adsorbents for Wastewater Treatment. <i>Nanoscale Research Letters</i> , 2015 , 10, 931	5	259
60	Hydrothermal synthesis of hierarchical coreEhell manganese oxide nanocomposites as efficient dye adsorbents for wastewater treatment. <i>RSC Advances</i> , 2015 , 5, 56279-56285	3.7	77
59	Self-Assembly Reduced Graphene Oxide Nanosheet Hydrogel Fabrication by Anchorage of Chitosan/Silver and Its Potential Efficient Application toward Dye Degradation for Wastewater Treatments. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 3130-3139	8.3	153
58	Colloidal GoldCollagen Protein CoreShell Nanoconjugate: One-Step Biomimetic Synthesis, Layer-by-Layer Assembled Film, and Controlled Cell Growth. <i>ACS Applied Materials & Company Controlled Cell Growth</i> . <i>ACS Applied Materials & Company Controlled Cell Growth</i> .	9.5	78
57	Functional architectures based on self-assembly of bio-inspired dipeptides: Structure modulation and its photoelectronic applications. <i>Advances in Colloid and Interface Science</i> , 2015 , 225, 177-93	14.3	49
56	Enzyme-Responsive Release of Doxorubicin from Monodisperse Dipeptide-Based Nanocarriers for Highly Efficient Cancer Treatment In Vitro. <i>Advanced Functional Materials</i> , 2015 , 25, 1193-1204	15.6	149
55	Peptide-Induced Hierarchical Long-Range Order and Photocatalytic Activity of Porphyrin Assemblies. <i>Angewandte Chemie</i> , 2015 , 127, 510-515	3.6	68
54	Peptide-induced hierarchical long-range order and photocatalytic activity of porphyrin assemblies. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 500-5	16.4	74
53	Synthesis of Peptide-Based Hybrid Nanobelts with Enhanced Color Emission by Heat Treatment or Water Induction. <i>Chemistry - A European Journal</i> , 2015 , 21, 9461-7	4.8	24
52	Drug Delivery: Enzyme-Responsive Release of Doxorubicin from Monodisperse Dipeptide-Based Nanocarriers for Highly Efficient Cancer Treatment In Vitro (Adv. Funct. Mater. 8/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 1327-1327	15.6	

(2011-2015)

51	Preparation and adsorption capacity evaluation of graphene oxide-chitosan composite hydrogels. <i>Science China Materials</i> , 2015 , 58, 811-818	7.1	57	
50	One-Step Nanoengineering of Hydrophobic Photosensitive Drugs for the Photodynamic Therapy. Journal of Nanoscience and Nanotechnology, 2015 , 15, 10141-8	1.3	5	
49	Photothermally-Induced Molecular Self-Assembly of Macroscopic Peptide-Inorganic Hybrid Films. <i>Science of Advanced Materials</i> , 2015 , 7, 1701-1707	2.3	4	
48	Organogels via Gemini Amphiphile-Graphene Oxide Nanocomposites: Self-Assembly and Symmetry Effect. <i>Science of Advanced Materials</i> , 2015 , 7, 1677-1685	2.3	3	
47	Sono-assembly of highly biocompatible polysaccharide capsules for hydrophobic drug delivery. <i>Advanced Healthcare Materials</i> , 2014 , 3, 825-31	10.1	14	
46	Nanoengineering of stimuli-responsive protein-based biomimetic protocells as versatile drug delivery tools. <i>Chemistry - A European Journal</i> , 2014 , 20, 6880-7	4.8	74	
45	Multifunctional Porous Microspheres Based on Peptide B orphyrin Hierarchical Co-Assembly. <i>Angewandte Chemie</i> , 2014 , 126, 2398-2402	3.6	45	
44	Multifunctional porous microspheres based on peptide-porphyrin hierarchical co-assembly. Angewandte Chemie - International Edition, 2014, 53, 2366-70	16.4	143	
43	Fabrication of Au@Pt multibranched nanoparticles and their application to in situ SERS monitoring. <i>ACS Applied Materials & Damp; Interfaces</i> , 2014 , 6, 17075-81	9.5	58	
42	Self-assembly and headgroup effect in nanostructured organogels via cationic amphiphile-graphene oxide composites. <i>PLoS ONE</i> , 2014 , 9, e101620	3.7	20	
41	Highly loaded hemoglobin spheres as promising artificial oxygen carriers. ACS Nano, 2012, 6, 6897-904	16.7	97	
40	One-pot synthesis of polypeptide-gold nanoconjugates for in vitro gene transfection. <i>ACS Nano</i> , 2012 , 6, 111-7	16.7	85	
39	Templating assembly of multifunctional hybrid colloidal spheres. Advanced Materials, 2012, 24, 2663-7	24	66	
38	Templating Assembly of Multifunctional Hybrid Colloidal Spheres (Adv. Mater. 20/2012). <i>Advanced Materials</i> , 2012 , 24, 2662-2662	24	1	
37	Self-assembly of hexagonal peptide microtubes and their optical waveguiding. <i>Advanced Materials</i> , 2011 , 23, 2796-801	24	151	
36	Uniaxially Oriented Peptide Crystals for Active Optical Waveguiding. <i>Angewandte Chemie</i> , 2011 , 123, 11382-11387	3.6	15	
35	Uniaxially oriented peptide crystals for active optical waveguiding. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 11186-91	16.4	104	
34	Honeycomb self-assembled peptide scaffolds by the breath figure method. <i>Chemistry - A European Journal</i> , 2011 , 17, 4238-45	4.8	57	

33	Peptide mesocrystals as templates to create an Au surface with stronger surface-enhanced Raman spectroscopic properties. <i>Chemistry - A European Journal</i> , 2011 , 17, 3370-5	4.8	56
32	2010,		6
31	Self-assembly and application of diphenylalanine-based nanostructures. <i>Chemical Society Reviews</i> , 2010 , 39, 1877-90	58.5	757
30	A peony-flower-like hierarchical mesocrystal formed by diphenylalanine. <i>Journal of Materials Chemistry</i> , 2010 , 20, 6734		70
29	Self-assembly of peptide-inorganic hybrid spheres for adaptive encapsulation of guests. <i>Advanced Materials</i> , 2010 , 22, 1283-7	24	169
28	Biomimetic Membranes 2010 , 7-39		
27	Layer-By-Layer Assembly of Biomimetic Microcapsules 2010 , 41-61		
26	F0F1-ATP Synthase-Based Active Biomimetic Systems 2010 , 63-89		1
25	Kinesin M icrotubule-Driven Active Biomimetic Systems 2010 , 91-102		
24	Biomimetic Interface 2010 , 103-128		
23	Peptide-Based Biomimetic Materials 2010 , 129-181		
22	Solvent-induced structural transition of self-assembled dipeptide: from organogels to microcrystals. <i>Chemistry - A European Journal</i> , 2010 , 16, 3176-83	4.8	243
21	Triggered release of insulin from glucose-sensitive enzyme multilayer shells. <i>Biomaterials</i> , 2009 , 30, 279	9 - 36 6	171
20	Proton gradients produced by glucose oxidase microcapsules containing motor F0F1-ATPase for continuous ATP biosynthesis. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 395-9	3.4	47
19	Glucose-sensitive microcapsules from glutaraldehyde cross-linked hemoglobin and glucose oxidase. <i>Biomacromolecules</i> , 2009 , 10, 1212-6	6.9	99
18	Formation of PANI tower-shaped hierarchical nanostructures by a limited hydrothermal reaction. Journal of Materials Chemistry, 2009 , 19, 3263		29
17	Controlled fabrication of polyaniline spherical and cubic shells with hierarchical nanostructures. <i>ACS Nano</i> , 2009 , 3, 3714-8	16.7	84
16	Organogels Based on Self-Assembly of Diphenylalanine Peptide and Their Application To Immobilize Quantum Dots. <i>Chemistry of Materials</i> , 2008 , 20, 1522-1526	9.6	215

LIST OF PUBLICATIONS

15	Preparation of polymer-coated mesoporous silica nanoparticles used for cellular imaging by a <code>graft-from[method</code> . <i>Journal of Materials Chemistry</i> , 2008 , 18, 5731		127
14	Self-assembly of peptide-based colloids containing lipophilic nanocrystals. <i>Small</i> , 2008 , 4, 1687-93	11	63
13	Reversible transitions between peptide nanotubes and vesicle-like structures including theoretical modeling studies. <i>Chemistry - A European Journal</i> , 2008 , 14, 5974-80	4.8	135
12	Controlled Preparation of MnO2 Hierarchical Hollow Nanostructures and Their Application in Water Treatment. <i>Advanced Materials</i> , 2008 , 20, 452-456	24	661
11	Motor Protein CF0F1 Reconstituted in Lipid-Coated Hemoglobin Microcapsules for ATP Synthesis. <i>Advanced Materials</i> , 2008 , 20, 601-605	24	78
10	Synthesis and in vitro behavior of multivalent cationic lipopeptide for DNA delivery and release in HeLa cells. <i>Bioconjugate Chemistry</i> , 2007 , 18, 1735-8	6.3	21
9	Transition of cationic dipeptide nanotubes into vesicles and oligonucleotide delivery. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 2431-4	16.4	278
8	Adenosine triphosphate biosynthesis catalyzed by FoF1 ATP synthase assembled in polymer microcapsules. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 6996-7000	16.4	67
7	Transition of Cationic Dipeptide Nanotubes into Vesicles and Oligonucleotide Delivery. <i>Angewandte Chemie</i> , 2007 , 119, 2483-2486	3.6	81
6	Adenosine Triphosphate Biosynthesis Catalyzed by FoF1 ATP Synthase Assembled in Polymer Microcapsules. <i>Angewandte Chemie</i> , 2007 , 119, 7126-7130	3.6	15
5	Thermosensitive Nanostructures Comprising Gold Nanoparticles Grafted with Block Copolymers. <i>Advanced Functional Materials</i> , 2007 , 17, 3134-3140	15.6	163
4	Preparation and rheological properties of oilWaterBoal triplex synfuel using petroleum sulfonate as the dispersants. <i>Fuel Processing Technology</i> , 2007 , 88, 221-225	7.2	11
3	Hemoglobin protein hollow shells fabricated through covalent layer-by-layer technique. <i>Biochemical and Biophysical Research Communications</i> , 2007 , 354, 357-62	3.4	91
2	Glycolipid patterns supported by human serum albumin for E. coli recognition. <i>Biochemical and Biophysical Research Communications</i> , 2007 , 358, 424-8	3.4	9
1	Encapsulated photosensitive drugs by biodegradable microcapsules to incapacitate cancer cells. Journal of Materials Chemistry, 2007 , 17, 4018		94