
## Joseph G Gleeson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2821046/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Biallelic variants in <i>SLC38A3</i> encoding a glutamine transporter cause epileptic encephalopathy.<br>Brain, 2022, 145, 909-924.                                                                                                                  | 3.7  | 17        |
| 2  | The Neurobiology of Modern Viral Scourges: ZIKV and COVID-19. Neuroscientist, 2022, 28, 438-452.                                                                                                                                                     | 2.6  | 4         |
| 3  | Biallelic <i>FRA10AC1</i> variants cause a neurodevelopmental disorder with growth retardation.<br>Brain, 2022, 145, 1551-1563.                                                                                                                      | 3.7  | 9         |
| 4  | Oligonucleotide correction of an intronic TIMMDC1 variant in cells of patients with severe neurodegenerative disorder. Npj Genomic Medicine, 2022, 7, 9.                                                                                             | 1.7  | 8         |
| 5  | Clinicoâ€radiological features, molecular spectrum, and identification of prognostic factors in<br>developmental and epileptic encephalopathy due to inosine triphosphate pyrophosphatase (ITPase)<br>deficiency. Human Mutation, 2022, 43, 403-419. | 1.1  | 9         |
| 6  | Biallelic BICD2 variant is a novel candidate for Cohen-like syndrome. Journal of Human Genetics, 2022,<br>67, 553-556.                                                                                                                               | 1.1  | 3         |
| 7  | <scp>Elâ€Hattabâ€Alkuraya</scp> syndrome caused by biallelic <scp><i>WDR45B</i></scp> pathogenic<br>variants: Further delineation of the phenotype and genotype. Clinical Genetics, 2022, 101, 530-540.                                              | 1.0  | 7         |
| 8  | Somatic mosaicism reveals clonal distributions of neocortical development. Nature, 2022, 604, 689-696.                                                                                                                                               | 13.7 | 26        |
| 9  | A Zika virus mutation enhances transmission potential and confers escape from protective dengue virus immunity. Cell Reports, 2022, 39, 110655.                                                                                                      | 2.9  | 20        |
| 10 | Monoallelic and biallelic mutations in <i>RELN</i> underlie a graded series of neurodevelopmental disorders. Brain, 2022, 145, 3274-3287.                                                                                                            | 3.7  | 6         |
| 11 | A phenotypic spectrum of autism is attributable to the combined effects of rare variants, polygenic risk and sex. Nature Genetics, 2022, 54, 1284-1292.                                                                                              | 9.4  | 66        |
| 12 | Inhibition of G-protein signalling in cardiac dysfunction of intellectual developmental disorder with cardiac arrhythmia (IDDCA) syndrome. Journal of Medical Genetics, 2021, 58, 815-831.                                                           | 1.5  | 3         |
| 13 | Biallelic variants in HPDL, encoding 4-hydroxyphenylpyruvate dioxygenase-like protein, lead to an<br>infantile neurodegenerative condition. Genetics in Medicine, 2021, 23, 524-533.                                                                 | 1.1  | 17        |
| 14 | Mutations in Spliceosomal Genes PPIL1 and PRP17 Cause Neurodegenerative Pontocerebellar Hypoplasia<br>with Microcephaly. Neuron, 2021, 109, 241-256.e9.                                                                                              | 3.8  | 31        |
| 15 | UBR7 functions with UBR5 in the Notch signaling pathway and is involved in a neurodevelopmental<br>syndrome with epilepsy, ptosis, and hypothyroidism. American Journal of Human Genetics, 2021, 108,<br>134-147.                                    | 2.6  | 15        |
| 16 | Alternative genomic diagnoses for individuals with a clinical diagnosis of Dubowitz syndrome.<br>American Journal of Medical Genetics, Part A, 2021, 185, 119-133.                                                                                   | 0.7  | 17        |
| 17 | Insight into developmental mechanisms of global and focal migration disorders of cortical development. Current Opinion in Neurobiology, 2021, 66, 77-84.                                                                                             | 2.0  | 9         |
| 18 | Expanding the phenotype of <i>PIGS</i> â€associated early onset epileptic developmental encephalopathy.<br>Epilepsia, 2021, 62, e35-e41.                                                                                                             | 2.6  | 11        |

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The landscape of somatic mutation in cerebral cortex of autistic and neurotypical individuals revealed by ultra-deep whole-genome sequencing. Nature Neuroscience, 2021, 24, 176-185.                                                     | 7.1  | 73        |
| 20 | Negative selection on human genes underlying inborn errors depends on disease outcome and both<br>the mode and mechanism of inheritance. Proceedings of the National Academy of Sciences of the<br>United States of America, 2021, 118, . | 3.3  | 33        |
| 21 | Comprehensive identification of somatic nucleotide variants in human brain tissue. Genome Biology, 2021, 22, 92.                                                                                                                          | 3.8  | 26        |
| 22 | Loss of function mutations in GEMIN5 cause a neurodevelopmental disorder. Nature Communications, 2021, 12, 2558.                                                                                                                          | 5.8  | 28        |
| 23 | Biallelic variants in KARS1 are associated with neurodevelopmental disorders and hearing loss recapitulated by the knockout zebrafish. Genetics in Medicine, 2021, 23, 1933-1943.                                                         | 1.1  | 11        |
| 24 | Loss of C2orf69 defines a fatal autoinflammatory syndrome in humans and zebrafish that evokes a<br>glycogen-storage-associated mitochondriopathy. American Journal of Human Genetics, 2021, 108,<br>1301-1317.                            | 2.6  | 11        |
| 25 | A human three-dimensional neural-perivascular â€~assembloid' promotes astrocytic development and<br>enables modeling of SARS-CoV-2 neuropathology. Nature Medicine, 2021, 27, 1600-1606.                                                  | 15.2 | 94        |
| 26 | A Human Pleiotropic Multiorgan Condition Caused by Deficient Wnt Secretion. New England Journal of Medicine, 2021, 385, 1292-1301.                                                                                                        | 13.9 | 23        |
| 27 | Implication of folate deficiency in CYP2U1 loss of function. Journal of Experimental Medicine, 2021, 218, .                                                                                                                               | 4.2  | 13        |
| 28 | Developmental and temporal characteristics of clonal sperm mosaicism. Cell, 2021, 184, 4772-4783.e15.                                                                                                                                     | 13.5 | 27        |
| 29 | ABHD16A deficiency causes a complicated form of hereditary spastic paraplegia associated with intellectual disability and cerebral anomalies. American Journal of Human Genetics, 2021, 108, 2017-2023.                                   | 2.6  | 9         |
| 30 | Sperm mosaicism: implications for genomic diversity and disease. Trends in Genetics, 2021, 37, 890-902.                                                                                                                                   | 2.9  | 13        |
| 31 | Bi-allelic TTC5 variants cause delayed developmental milestones and intellectual disability. Journal of<br>Medical Genetics, 2021, 58, 237-246.                                                                                           | 1.5  | 4         |
| 32 | Autism risk in offspring can be assessed through quantification of male sperm mosaicism. Nature<br>Medicine, 2020, 26, 143-150.                                                                                                           | 15.2 | 76        |
| 33 | Defining the clinical, molecular and imaging spectrum of adaptor protein complex 4-associated hereditary spastic paraplegia. Brain, 2020, 143, 2929-2944.                                                                                 | 3.7  | 29        |
| 34 | MINPP1 prevents intracellular accumulation of the chelator inositol hexakisphosphate and is mutated in Pontocerebellar Hypoplasia. Nature Communications, 2020, 11, 6087.                                                                 | 5.8  | 28        |
| 35 | Biallelic loss of function variants in <scp><i>SYT2</i></scp> cause a treatable congenital onset presynaptic myasthenic syndrome. American Journal of Medical Genetics, Part A, 2020, 182, 2272-2283.                                     | 0.7  | 20        |
| 36 | De Novo and Bi-allelic Pathogenic Variants in NARS1 Cause Neurodevelopmental Delay Due to Toxic<br>Gain-of-Function and Partial Loss-of-Function Effects. American Journal of Human Genetics, 2020, 107,<br>311-324.                      | 2.6  | 32        |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Loss of NARS1 impairs progenitor proliferation in cortical brain organoids and leads to microcephaly.<br>Nature Communications, 2020, 11, 4038.                                                                                  | 5.8 | 44        |
| 38 | Editorial overview: Neurodevelopment Diseases and Neurogenetics pivot towards mechanisms and therapies. Current Opinion in Genetics and Development, 2020, 65, iii-vii.                                                          | 1.5 | 0         |
| 39 | A founder mutation in PEX12 among Egyptian patients in peroxisomal biogenesis disorder.<br>Neurological Sciences, 2020, 42, 2737-2745.                                                                                           | 0.9 | 1         |
| 40 | Molecular diagnosis in recessive pediatric neurogenetic disease can help reduce disease recurrence in<br>families. BMC Medical Genomics, 2020, 13, 68.                                                                           | 0.7 | 4         |
| 41 | Closing in on Mechanisms of Open Neural Tube Defects. Trends in Neurosciences, 2020, 43, 519-532.                                                                                                                                | 4.2 | 47        |
| 42 | Recurrent homozygous damaging mutation in <i>TMX2</i> , encoding a protein disulfide isomerase, in four families with microlissencephaly. Journal of Medical Genetics, 2020, 57, 274-282.                                        | 1.5 | 6         |
| 43 | Pathogenic ARH3 mutations result in ADP-ribose chromatin scars during DNA strand break repair.<br>Nature Communications, 2020, 11, 3391.                                                                                         | 5.8 | 25        |
| 44 | Regulation of human cerebral cortical development by EXOC7 and EXOC8, components of the exocyst complex, and roles in neural progenitor cell proliferation and survival. Genetics in Medicine, 2020, 22, 1040-1050.              | 1.1 | 13        |
| 45 | Bi-allelic Variants in the GPI Transamidase Subunit PIGK Cause a Neurodevelopmental Syndrome with<br>Hypotonia, Cerebellar Atrophy, and Epilepsy. American Journal of Human Genetics, 2020, 106, 484-495.                        | 2.6 | 22        |
| 46 | RSRC1 loss-of-function variants cause mild to moderate autosomal recessive intellectual disability.<br>Brain, 2020, 143, e31-e31.                                                                                                | 3.7 | 6         |
| 47 | Loss of the neural-specific BAF subunit ACTL6B relieves repression of early response genes and causes recessive autism. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10055-10066. | 3.3 | 34        |
| 48 | Novel congenital disorder of <i>O</i> -linked glycosylation caused by GALNT2 loss of function. Brain, 2020, 143, 1114-1126.                                                                                                      | 3.7 | 46        |
| 49 | Bi-allelic GOT2 Mutations Cause a Treatable Malate-Aspartate Shuttle-Related Encephalopathy.<br>American Journal of Human Genetics, 2019, 105, 534-548.                                                                          | 2.6 | 46        |
| 50 | Somatic double-hit in MTOR and RPS6 in hemimegalencephaly with intractable epilepsy. Human<br>Molecular Genetics, 2019, 28, 3755-3765.                                                                                           | 1.4 | 42        |
| 51 | Agenesis of the putamen and globus pallidus caused by recessive mutations in the homeobox gene GSX2. Brain, 2019, 142, 2965-2978.                                                                                                | 3.7 | 12        |
| 52 | NSUN2 introduces 5-methylcytosines in mammalian mitochondrial tRNAs. Nucleic Acids Research, 2019,<br>47, 8720-8733.                                                                                                             | 6.5 | 84        |
| 53 | Homozygous Missense Variants in NTNG2, Encoding a Presynaptic Netrin-G2 Adhesion Protein, Lead to a<br>Distinct Neurodevelopmental Disorder. American Journal of Human Genetics, 2019, 105, 1048-1056.                           | 2.6 | 30        |
| 54 | Redefining the Etiologic Landscape of Cerebellar Malformations. American Journal of Human Genetics,<br>2019, 105, 606-615.                                                                                                       | 2.6 | 61        |

| #  | Article                                                                                                                                                                                                                      | IF                  | CITATIONS        |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|
| 55 | Loss of SMPD4 Causes a Developmental Disorder Characterized by Microcephaly and Congenital<br>Arthrogryposis. American Journal of Human Genetics, 2019, 105, 689-705.                                                        | 2.6                 | 48               |
| 56 | Bi-allelic Loss of Human APC2, Encoding Adenomatous Polyposis Coli Protein 2, Leads to Lissencephaly,<br>Subcortical Heterotopia, and Global Developmental Delay. American Journal of Human Genetics, 2019,<br>105, 844-853. | 2.6                 | 17               |
| 57 | Zika Virus Protease Cleavage of Host Protein Septin-2 Mediates Mitotic Defects in Neural Progenitors.<br>Neuron, 2019, 101, 1089-1098.e4.                                                                                    | 3.8                 | 55               |
| 58 | Cytosine-5 RNA methylation links protein synthesis to cell metabolism. PLoS Biology, 2019, 17, e3000297.                                                                                                                     | 2.6                 | 87               |
| 59 | Diagnosis of genetic diseases in seriously ill children by rapid whole-genome sequencing and automated phenotyping and interpretation. Science Translational Medicine, 2019, 11, .                                           | 5.8                 | 203              |
| 60 | Bi-allelic Mutations in FAM149B1 Cause Abnormal Primary Cilium and a Range of Ciliopathy Phenotypes in Humans. American Journal of Human Genetics, 2019, 104, 731-737.                                                       | 2.6                 | 23               |
| 61 | Biallelic mutations in valyl-tRNA synthetase gene VARS are associated with a progressive neurodevelopmental epileptic encephalopathy. Nature Communications, 2019, 10, 707.                                                  | 5.8                 | 28               |
| 62 | Primary Cilia and Brain Wiring, Connecting the Dots. Developmental Cell, 2019, 51, 661-663.                                                                                                                                  | 3.1                 | 0                |
| 63 | Loss of Oxidation Resistance 1, OXR1, Is Associated with an Autosomal-Recessive Neurological Disease with Cerebellar Atrophy and Lysosomal Dysfunction. American Journal of Human Genetics, 2019, 105, 1237-1253.            | 2.6                 | 34               |
| 64 | Blacklisting variants common in private cohorts but not in public databases optimizes human exome<br>analysis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116,<br>950-959.       | 3.3                 | 52               |
| 65 | Clinical, biomarker and genetic spectrum of Niemannâ€Pick type C in Egypt: The detection of nine novel<br><i>NPC1</i> mutations. Clinical Genetics, 2019, 95, 537-539.                                                       | 1.0                 | 4                |
| 66 | MAB21L1 loss of function causes a syndromic neurodevelopmental disorder with<br>distinctive <i>c</i> erebellar, <i>o</i> cular, cranio <i>f</i> acial and <i>g</i> enital features (COFG) Tj ETQq0 0 0 rg                    | BT <b>10</b> 3verlo | ock 2150 Tf 50 2 |
| 67 | Loss of the sphingolipid desaturase DEGS1 causes hypomyelinating leukodystrophy. Journal of Clinical<br>Investigation, 2019, 129, 1240-1256.                                                                                 | 3.9                 | 68               |
| 68 | Paternally inherited cis-regulatory structural variants are associated with autism. Science, 2018, 360, 327-331.                                                                                                             | 6.0                 | 174              |
| 69 | Analysis of 17 genes detects mutations in 81% of 811 patients with lissencephaly. Genetics in Medicine, 2018, 20, 1354-1364.                                                                                                 | 1.1                 | 92               |
| 70 | Biallelic variants in KIF14 cause intellectual disability with microcephaly. European Journal of Human<br>Genetics, 2018, 26, 330-339.                                                                                       | 1.4                 | 52               |
| 71 | Defining the phenotypic spectrum of <i>SLC6A1</i> mutations. Epilepsia, 2018, 59, 389-402.                                                                                                                                   | 2.6                 | 99               |
| 72 | Early life experience shapes neural genome. Science, 2018, 359, 1330-1331.                                                                                                                                                   | 6.0                 | 11               |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A homozygous founder mutation in <i>TRAPPC6B</i> associates with a neurodevelopmental disorder characterised by microcephaly, epilepsy and autistic features. Journal of Medical Genetics, 2018, 55, 48-54.               | 1.5 | 37        |
| 74 | Loss of tubulin deglutamylase <scp>CCP</scp> 1 causes infantileâ€onset neurodegeneration. EMBO<br>Journal, 2018, 37, .                                                                                                    | 3.5 | 86        |
| 75 | Loss of <i>Protocadherinâ€12</i> <scp>L</scp> eads to<br><scp>D</scp> iencephalicâ€ <scp>M</scp> esencephalic <scp>J</scp> unction <scp>D</scp> ysplasia<br><scp>S</scp> yndrome. Annals of Neurology, 2018, 84, 638-647. | 2.8 | 19        |
| 76 | Genetic variants in components of the NALCN–UNC80–UNC79 ion channel complex cause a broad clinical phenotype (NALCN channelopathies). Human Genetics, 2018, 137, 753-768.                                                 | 1.8 | 38        |
| 77 | Biallelic loss of human CTNNA2, encoding αN-catenin, leads to ARP2/3 complex overactivity and disordered cortical neuronal migration. Nature Genetics, 2018, 50, 1093-1101.                                               | 9.4 | 70        |
| 78 | Mutations in LNPK, Encoding the Endoplasmic Reticulum Junction Stabilizer Lunapark, Cause a<br>Recessive Neurodevelopmental Syndrome. American Journal of Human Genetics, 2018, 103, 296-304.                             | 2.6 | 24        |
| 79 | Biallelic Mutations in ADPRHL2, Encoding ADP-Ribosylhydrolase 3, Lead to a Degenerative Pediatric<br>Stress-Induced Epileptic Ataxia Syndrome. American Journal of Human Genetics, 2018, 103, 431-439.                    | 2.6 | 62        |
| 80 | Biallelic mutations in the 3′ exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing. Nature Genetics, 2017, 49, 457-464.                                                               | 9.4 | 66        |
| 81 | Homozygous mutation in <i>NUP107</i> leads to microcephaly with steroid-resistant nephrotic condition similar to Galloway-Mowat syndrome. Journal of Medical Genetics, 2017, 54, 399-403.                                 | 1.5 | 62        |
| 82 | Biallelic Variants in OTUD6B Cause an Intellectual Disability Syndrome Associated with Seizures and<br>Dysmorphic Features. American Journal of Human Genetics, 2017, 100, 676-688.                                       | 2.6 | 54        |
| 83 | Pyruvate dehydrogenase complex-E2 deficiency causes paroxysmal exercise-induced dyskinesia.<br>Neurology, 2017, 89, 2297-2298.                                                                                            | 1.5 | 22        |
| 84 | Mutations in GPAA1 , Encoding a GPI Transamidase Complex Protein, Cause Developmental Delay,<br>Epilepsy, Cerebellar Atrophy, and Osteopenia. American Journal of Human Genetics, 2017, 101, 856-865.                     | 2.6 | 49        |
| 85 | Hypomorphic Recessive Variants in SUFU Impair the Sonic Hedgehog Pathway and Cause Joubert<br>Syndrome with Cranio-facial and Skeletal Defects. American Journal of Human Genetics, 2017, 101,<br>552-563.                | 2.6 | 45        |
| 86 | Homozygous Mutations in TBC1D23 Lead to a Non-degenerative Form of Pontocerebellar Hypoplasia.<br>American Journal of Human Genetics, 2017, 101, 441-450.                                                                 | 2.6 | 43        |
| 87 | DCLK1 phosphorylates the microtubuleâ€associated protein MAP7D1 to promote axon elongation in cortical neurons. Developmental Neurobiology, 2017, 77, 493-510.                                                            | 1.5 | 48        |
| 88 | Autosomal-Recessive Mutations in the tRNA Splicing Endonuclease Subunit TSEN15 Cause<br>Pontocerebellar Hypoplasia and Progressive Microcephaly. American Journal of Human Genetics, 2016,<br>99, 228-235.                | 2.6 | 44        |
| 89 | Extending the mutation spectrum for Galloway–Mowat syndrome to include homozygous missense<br>mutations in the WDR73 gene. American Journal of Medical Genetics, Part A, 2016, 170, 992-998.                              | 0.7 | 26        |
| 90 | <i>PYCR2</i> Mutations cause a lethal syndrome of microcephaly and failure to thrive. Annals of Neurology, 2016, 80, 59-70.                                                                                               | 2.8 | 35        |

| #   | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Impaired Amino Acid Transport at the Blood Brain Barrier Is a Cause of Autism Spectrum Disorder.<br>Cell, 2016, 167, 1481-1494.e18.                                                                                    | 13.5 | 265       |
| 92  | Uner Tan syndrome caused by a homozygousTUBB2Bmutation affecting microtubule stability. Human<br>Molecular Genetics, 2016, 26, ddw383.                                                                                 | 1.4  | 11        |
| 93  | The Neurobiology of Zika Virus. Neuron, 2016, 92, 949-958.                                                                                                                                                             | 3.8  | 101       |
| 94  | Zika Virus Infects Neural Progenitors in the Adult Mouse Brain and Alters Proliferation. Cell Stem Cell, 2016, 19, 593-598.                                                                                            | 5.2  | 242       |
| 95  | Mutations in MBOAT7 , Encoding Lysophosphatidylinositol Acyltransferase I, Lead to Intellectual<br>Disability Accompanied by Epilepsy and Autistic Features. American Journal of Human Genetics, 2016, 99,<br>912-916. | 2.6  | 69        |
| 96  | Characterization of Greater Middle Eastern genetic variation for enhanced disease gene discovery.<br>Nature Genetics, 2016, 48, 1071-1076.                                                                             | 9.4  | 314       |
| 97  | Biallelic Mutations in Citron Kinase Link Mitotic Cytokinesis to Human Primary Microcephaly.<br>American Journal of Human Genetics, 2016, 99, 501-510.                                                                 | 2.6  | 70        |
| 98  | When size matters: CHD8 in autism. Nature Neuroscience, 2016, 19, 1430-1432.                                                                                                                                           | 7.1  | 14        |
| 99  | Biallelic Mutations in TMTC3, Encoding a Transmembrane and TPR-Containing Protein, Lead to<br>Cobblestone Lissencephaly. American Journal of Human Genetics, 2016, 99, 1181-1189.                                      | 2.6  | 30        |
| 100 | Mutations in <i>CEP120</i> cause Joubert syndrome as well as complex ciliopathy phenotypes. Journal of Medical Genetics, 2016, 53, 608-615.                                                                            | 1.5  | 55        |
| 101 | Identification of a homozygous nonsense mutation in KIAA0556 in a consanguineous family displaying<br>Joubert syndrome. Human Genetics, 2016, 135, 919-921.                                                            | 1.8  | 18        |
| 102 | Molybdenum cofactor and isolated sulphite oxidase deficiencies: Clinical and molecular spectrum among Egyptian patients. European Journal of Paediatric Neurology, 2016, 20, 714-722.                                  | 0.7  | 33        |
| 103 | Genome-wide screen identifies novel machineries required for both ciliogenesis and cell cycle arrest<br>upon serum starvation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1307-1318.         | 1.9  | 26        |
| 104 | The mutation significance cutoff: gene-level thresholds for variant predictions. Nature Methods, 2016, 13, 109-110.                                                                                                    | 9.0  | 249       |
| 105 | Mutations in UNC80, Encoding Part of the UNC79-UNC80-NALCN Channel Complex, Cause<br>Autosomal-Recessive Severe Infantile Encephalopathy. American Journal of Human Genetics, 2016, 98,<br>210-215.                    | 2.6  | 37        |
| 106 | Dandy–Walker malformation, genitourinary abnormalities, and intellectual disability in two families.<br>American Journal of Medical Genetics, Part A, 2015, 167, 2503-2507.                                            | 0.7  | 6         |
| 107 | Functional genome-wide siRNA screen identifies KIAA0586 as mutated in Joubert syndrome. ELife, 2015, 4, e06602.                                                                                                        | 2.8  | 64        |
| 108 | Inactivating mutations in MFSD2A, required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome. Nature Genetics, 2015, 47, 809-813.                                                        | 9.4  | 180       |

| #   | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Non-manifesting AHI1 truncations indicate localized loss-of-function tolerance in a severe Mendelian disease gene. Human Molecular Genetics, 2015, 24, 2594-2603.                                                    | 1.4  | 32        |
| 110 | Homozygous mutation of STXBP5L explains an autosomal recessive infantile-onset neurodegenerative disorder. Human Molecular Genetics, 2015, 24, 2000-2010.                                                            | 1.4  | 25        |
| 111 | An siRNA-based functional genomics screen for theÂidentification of regulators of ciliogenesis and<br>ciliopathyÂgenes. Nature Cell Biology, 2015, 17, 1074-1087.                                                    | 4.6  | 215       |
| 112 | Clinical Pertinence Metric Enables Hypothesis-Independent Genome-Phenome Analysis for Neurologic<br>Diagnosis. Journal of Child Neurology, 2015, 30, 881-888.                                                        | 0.7  | 10        |
| 113 | Ten new cases further delineate the syndromic intellectual disability phenotype caused by mutations in DYRK1A. European Journal of Human Genetics, 2015, 23, 1482-1487.                                              | 1.4  | 62        |
| 114 | Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction. Nature Genetics, 2015, 47, 528-534.                                                                | 9.4  | 111       |
| 115 | The human gene damage index as a gene-level approach to prioritizing exome variants. Proceedings of the United States of America, 2015, 112, 13615-13620.                                                            | 3.3  | 213       |
| 116 | Polo-like kinase 2 regulates angiogenic sprouting and blood vessel development. Developmental<br>Biology, 2015, 404, 49-60.                                                                                          | 0.9  | 14        |
| 117 | Clinical and Genetic Aspects of the Segmental Overgrowth Spectrum DueÂto Somatic Mutations in PIK3CA. Journal of Pediatrics, 2015, 167, 957-962.                                                                     | 0.9  | 29        |
| 118 | Identification of a novel ARL13B variant in a Joubert syndrome-affected patient with retinal impairment and obesity. European Journal of Human Genetics, 2015, 23, 621-627.                                          | 1.4  | 48        |
| 119 | Primary cilia in neurodevelopmental disorders. Nature Reviews Neurology, 2014, 10, 27-36.                                                                                                                            | 4.9  | 215       |
| 120 | Mutations in KATNB1 Cause Complex Cerebral Malformations by Disrupting Asymmetrically Dividing Neural Progenitors. Neuron, 2014, 84, 1226-1239.                                                                      | 3.8  | 95        |
| 121 | Biallelic Truncating Mutations in FMN2, Encoding the Actin-Regulatory Protein Formin 2, Cause<br>Nonsyndromic Autosomal-Recessive Intellectual Disability. American Journal of Human Genetics, 2014,<br>95, 721-728. | 2.6  | 62        |
| 122 | Mutations in CSPP1 Lead to Classical Joubert Syndrome. American Journal of Human Genetics, 2014, 94,<br>80-86.                                                                                                       | 2.6  | 75        |
| 123 | The ciliary proteins Meckelin and Jouberin are required for retinoic acid-dependent neural differentiation of mouse embryonic stem cells. Differentiation, 2014, 87, 134-146.                                        | 1.0  | 4         |
| 124 | Exome Sequencing Links Corticospinal Motor Neuron Disease to Common Neurodegenerative<br>Disorders. Science, 2014, 343, 506-511.                                                                                     | 6.0  | 466       |
| 125 | CLP1 Founder Mutation Links tRNA Splicing and Maturation to Cerebellar Development and Neurodegeneration. Cell, 2014, 157, 651-663.                                                                                  | 13.5 | 228       |
| 126 | Aberrant methylation of t <scp>RNA</scp> s links cellular stress to neuroâ€developmental disorders.<br>EMBO Journal, 2014, 33, 2020-2039.                                                                            | 3.5  | 490       |

| #   | Article                                                                                                                                                                             | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Off-Target Effect of doublecortin Family shRNA on Neuronal Migration Associated with Endogenous<br>MicroRNA Dysregulation. Neuron, 2014, 82, 1255-1262.                             | 3.8  | 79        |
| 128 | Primary Cilia in the Developing and Mature Brain. Neuron, 2014, 82, 511-521.                                                                                                        | 3.8  | 243       |
| 129 | Novel mutation in the fukutin gene in an Egyptian family with Fukuyama congenital muscular dystrophy and microcephaly. Gene, 2014, 539, 279-282.                                    | 1.0  | 5         |
| 130 | Pathogenetic mechanisms of focal cortical dysplasia. Epilepsia, 2014, 55, 970-978.                                                                                                  | 2.6  | 76        |
| 131 | Mutation spectrum of Joubert syndrome and related disorders among Arabs. Human Genome Variation, 2014, 1, 14020.                                                                    | 0.4  | 31        |
| 132 | AMPD2 Regulates GTP Synthesis and Is Mutated in a Potentially Treatable Neurodegenerative Brainstem Disorder. Cell, 2013, 154, 505-517.                                             | 13.5 | 94        |
| 133 | Mutations in LAMB1 Cause Cobblestone Brain Malformation without Muscular or Ocular<br>Abnormalities. American Journal of Human Genetics, 2013, 92, 468-474.                         | 2.6  | 96        |
| 134 | Exome Sequencing Can Improve Diagnosis and Alter Patient Management. Science Translational Medicine, 2012, 4, 138ra78.                                                              | 5.8  | 226       |
| 135 | Diencephalic-mesencephalic junction dysplasia: a novel recessive brain malformation. Brain, 2012, 135, 2416-2427.                                                                   | 3.7  | 34        |
| 136 | CEP41 is mutated in Joubert syndrome and is required for tubulin glutamylation at the cilium. Nature Genetics, 2012, 44, 193-199.                                                   | 9.4  | 157       |
| 137 | Mutations in <i>BCKD-kinase</i> Lead to a Potentially Treatable Form of Autism with Epilepsy. Science, 2012, 338, 394-397.                                                          | 6.0  | 272       |
| 138 | Alteration of Fatty-Acid-Metabolizing Enzymes Affects Mitochondrial Form and Function in Hereditary<br>Spastic Paraplegia. American Journal of Human Genetics, 2012, 91, 1051-1064. | 2.6  | 179       |
| 139 | De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly.<br>Nature Genetics, 2012, 44, 941-945.                                              | 9.4  | 628       |
| 140 | Functional genomic screen for modulators of ciliogenesis and cilium length. Nature, 2010, 464, 1048-1051.                                                                           | 13.7 | 473       |
| 141 | Identification of a novel recessiveRELN mutation using a homozygous balanced reciprocal translocation. American Journal of Medical Genetics, Part A, 2007, 143A, 939-944.           | 0.7  | 65        |
| 142 | Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. Journal of Cell Biology, 2004, 165, 709-721.                 | 2.3  | 390       |
| 143 | Ndel1 Operates in a Common Pathway with LIS1 and Cytoplasmic Dynein to Regulate Cortical Neuronal Positioning. Neuron, 2004, 44, 263-277.                                           | 3.8  | 334       |
| 144 | Patient Mutations in Doublecortin Define a Repeated Tubulin-binding Domain. Journal of Biological<br>Chemistry, 2000, 275, 34442-34450.                                             | 1.6  | 138       |

| #   | Article                                                                                                                                                                 | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | doublecortin, a Brain-Specific Gene Mutated in Human X-Linked Lissencephaly and Double Cortex<br>Syndrome, Encodes a Putative Signaling Protein. Cell, 1998, 92, 63-72. | 13.5 | 1,007     |
| 146 | Unbiased mosaic variant assessment in sperm: a cohort study to test predictability of transmission.<br>ELife, 0, 11, .                                                  | 2.8  | 5         |