Jingdong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2820934/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electronic structure modulation with ultrafine Fe3O4 nanoparticles on 2D Ni-based metal-organic framework layers for enhanced oxygen evolution reaction. Journal of Energy Chemistry, 2022, 65, 78-88.	7.1	41
2	Circadian regulation of protein cargo in extracellular vesicles. Science Advances, 2022, 8, eabc9061.	4.7	26
3	Synthesis and Structure of a Two-Dimensional Palladium Oxide Network on Reduced Graphene Oxide. Nano Letters, 2022, 22, 4854-4860.	4.5	3
4	Voltammetry and Singleâ€Molecule In Situ Scanning Tunnelling Microscopy of the Redox Metalloenzyme Human Sulfite Oxidase. ChemElectroChem, 2021, 8, 164-171.	1.7	9
5	Practical considerations for working with graphene oxide as alignment media for RDC measurements. Magnetic Resonance in Chemistry, 2021, 59, 738-745.	1.1	3
6	Bifunctional and Self-Supported NiFeP-Layer-Coated NiP Rods for Electrochemical Water Splitting in Alkaline Solution. ACS Applied Materials & amp; Interfaces, 2021, 13, 23702-23713.	4.0	69
7	Cobalt/nitrogen doped porous carbon as catalysts for efficient oxygen reduction reaction: Towards hybrid enzymatic biofuel cells. Electrochimica Acta, 2021, 389, 138791.	2.6	14
8	Direct electron transfer of fructose dehydrogenase immobilized on thiol-gold electrodes. Electrochimica Acta, 2021, 392, 138946.	2.6	16
9	Starch Capped Atomically Thin CuS Nanocrystals for Efficient Photothermal Therapy. Small, 2021, 17, e2103461.	5.2	25
10	Starch Capped Atomically Thin CuS Nanocrystals for Efficient Photothermal Therapy (Small 47/2021). Small, 2021, 17, 2170249.	5.2	2
11	Singleâ€Molecule Interactions between Heme Proteins and Carboxylic Groups in Various Chemical Environments. ChemElectroChem, 2020, 7, 4441-4445.	1.7	1
12	Reprint of "Electrochemical intercalator binding to single- and double-strand DNA- and LNA-based molecules on Au(111)-electrode surfaces". Journal of Electroanalytical Chemistry, 2020, 872, 114527.	1.9	0
13	Effect of Copper and Phosphate on the Biosynthesis of Palladium Nanoparticles by Shewanella oneidensis MRâ€1. ChemElectroChem, 2020, 7, 4460-4468.	1.7	2
14	Antimicrobial enzymatic biofuel cells. Chemical Communications, 2020, 56, 15589-15592.	2.2	9
15	An oxygen-reducing biocathode with "oxygen tanks― Chemical Communications, 2020, 56, 9767-9770.	2.2	9
16	Bilirubin oxidase oriented on novel type three-dimensional biocathodes with reduced graphene aggregation for biocathode. Biosensors and Bioelectronics, 2020, 167, 112500.	5.3	20
17	Microwave assisted crystalline and morphology evolution of flower-like Fe2O3@ iron doped K-birnessite composite and its application for lithium ion storage. Applied Surface Science, 2020, 525, 146513.	3.1	18
18	Electronic Spillover from a Metallic Nanoparticle: Can Simple Electrochemical Electron Transfer Processes Be Catalyzed by Electronic Coupling of a Molecular Scale Gold Nanoparticle Simultaneously to the Redox Molecule and the Electrode?. Journal of the American Chemical Society, 2020, 142, 10646-10658.	6.6	16

#	Article	IF	CITATIONS
19	Bacterially Generated Nanocatalysts and Their Applications. ACS Symposium Series, 2020, , 97-122.	0.5	2
20	Electrochemical intercalator binding to single- and double-strand DNA- and LNA-based molecules on Au(111)-electrode surfaces. Journal of Electroanalytical Chemistry, 2020, 865, 114138.	1.9	5
21	Development of graphene-based enzymatic biofuel cells: A minireview. Bioelectrochemistry, 2020, 134, 107537.	2.4	36
22	Chemistry of cysteine assembly on Au(100): electrochemistry, <i>in situ</i> STM and molecular modeling. Nanoscale, 2019, 11, 17235-17251.	2.8	9
23	Electrons selective uptake of a metal-reducing bacterium Shewanella oneidensis MR-1 from ferrocyanide. Biosensors and Bioelectronics, 2019, 142, 111571.	5.3	13
24	Adsorption, Chemical Enhancement, and Low-Lying Excited States of <i>p</i> -Methylbenzenethiol on Silver and Gold Nanoparticle Surfaces: A Surface Enhanced Raman Spectroscopy and Density Functional Theory Study. Journal of Physical Chemistry C, 2019, 123, 23026-23036.	1.5	19
25	Reduced graphene oxide-coated microfibers for oil–water separation. Environmental Science: Nano, 2019, 6, 3215-3224.	2.2	12
26	Well-defined cobalt sulfide nanoparticles locked in 3D hollow nitrogen-doped carbon shells for superior lithium and sodium storage. Energy Storage Materials, 2019, 18, 114-124.	9.5	62
27	Three-Dimensional Sulfite Oxidase Bioanodes Based on Graphene Functionalized Carbon Paper for Sulfite/O ₂ Biofuel Cells. ACS Catalysis, 2019, 9, 6543-6554.	5.5	34
28	Implications of Byproduct Chemistry in Nanoparticle Synthesis. Journal of Physical Chemistry C, 2019, 123, 25402-25411.	1.5	2
29	Two-dimensional graphene paper supported flexible enzymatic fuel cells. Nanoscale Advances, 2019, 1, 2562-2570.	2.2	26
30	Gold–carbonyl group interactions in the electrochemistry of anthraquinone thiols self-assembled on Au(111)-surfaces. Chemical Science, 2019, 10, 3927-3936.	3.7	8
31	Supercapacitor/biofuel cell hybrid device employing biomolecules for energy conversion and charge storage. Bioelectrochemistry, 2019, 128, 94-99.	2.4	24
32	Three-Dimensional Bioelectrodes Utilizing Graphene Based Bioink. Journal of the Electrochemical Society, 2019, 166, G170-G177.	1.3	8
33	Inward Electron Transfer of a Metal Reducing Bacterium from High-Redox Potential Molecules. ECS Meeting Abstracts, 2019, , .	0.0	0
34	Electrochemistry of single molecules and biomolecules, molecular scale nanostructures, and low-dimensional systems. Current Opinion in Electrochemistry, 2018, 7, 179-187.	2.5	13
35	Redox Potentials and Electronic States of Iron Porphyrin IX Adsorbed on Single Crystal Gold Electrode Surfaces. Langmuir, 2018, 34, 3610-3618.	1.6	7
36	Selective electrocatalysis of biofuel molecular oxidation using palladium nanoparticles generated on <i>Shewanella oneidensis</i> MR-1. Journal of Materials Chemistry A, 2018, 6, 10655-10662.	5.2	35

#	Article	IF	CITATIONS
37	Tailored Electron Transfer Pathways in Au _{core} /Pt _{shell} –Graphene Nanocatalysts for Fuel Cells. Advanced Energy Materials, 2018, 8, 1702609.	10.2	66
38	A gold-nanoparticle stoppered [2]rotaxane. Nanoscale, 2018, 10, 9133-9140.	2.8	9
39	General Syntheses of Nanotubes Induced by Block Copolymer Selfâ€Assembly. Macromolecular Rapid Communications, 2018, 39, e1800125.	2.0	7
40	Three-dimensional iron sulfide-carbon interlocked graphene composites for high-performance sodium-ion storage. Nanoscale, 2018, 10, 7851-7859.	2.8	56
41	Chemically controlled interfacial nanoparticle assembly into nanoporous gold films for electrochemical applications. Journal of Materials Chemistry A, 2018, 6, 556-564.	5.2	12
42	Fuel-independent and membrane-less self-charging biosupercapacitor. Chemical Communications, 2018, 54, 11801-11804.	2.2	16
43	Hierarchical layer-by-layer porous FeCo ₂ S ₄ @Ni(OH) ₂ arrays for all-solid-state asymmetric supercapacitors. Journal of Materials Chemistry A, 2018, 6, 20480-20490.	5.2	102
44	Nanoengineering of Graphene-Supported Functional Composites for Performance-Enhanced Enzymatic Biofuel Cells. , 2018, , 219-240.		2
45	A straight forward approach to electrodeposit tungsten disulfide/poly(3,4-ethylenedioxythiophene) composites onto nanoporous gold for the hydrogen evolution reaction. Applied Surface Science, 2017, 410, 308-314.	3.1	23
46	The Pathogenic A2V Mutant Exhibits Distinct Aggregation Kinetics, Metal Site Structure, and Metal Exchange of the Cu ²⁺ –Aβ Complex. Chemistry - A European Journal, 2017, 23, 13591-13595.	1.7	17
47	Extracellular polymeric substances are transient media for microbial extracellular electron transfer. Science Advances, 2017, 3, e1700623.	4.7	439
48	Microwave synthesis of metal nanocatalysts for the electrochemical oxidation of small biomolecules. Current Opinion in Electrochemistry, 2017, 4, 124-132.	2.5	10
49	Electrochemical single-molecule conductivity of duplex and quadruplex DNA. Current Opinion in Electrochemistry, 2017, 4, 166-174.	2.5	3
50	Simultaneous modulation of surface composition, oxygen vacancies and assembly in hierarchical Co ₃ O ₄ mesoporous nanostructures for lithium storage and electrocatalytic oxygen evolution. Nanoscale, 2017, 9, 14431-14441.	2.8	77
51	Side Effect of Good's Buffers on Optical Properties of Gold Nanoparticle Solutions. ChemElectroChem, 2016, 3, 1212-1218.	1.7	3
52	Chiral Selectivity in Inter-reactant Recognition and Electron Transfer of the Oxidation of Horse Heart Cytochrome <i>c</i> by Trioxalatocobaltate(III). Inorganic Chemistry, 2016, 55, 9335-9345.	1.9	5
53	Construction of Insulin 18â€mer Nanoassemblies Driven by Coordination to Iron(II) and Zinc(II) Ions at Distinct Sites. Angewandte Chemie - International Edition, 2016, 55, 2378-2381.	7.2	11
54	Construction of Insulin 18â€mer Nanoassemblies Driven by Coordination to Iron(II) and Zinc(II) Ions at Distinct Sites. Angewandte Chemie, 2016, 128, 2424-2427.	1.6	3

#	Article	IF	CITATIONS
55	Voltammetry and molecular assembly of G-quadruplex DNAzyme on single-crystal Au(111)-electrode surfaces – hemin as an electrochemical intercalator. Faraday Discussions, 2016, 193, 99-112.	1.6	6
56	Atomically thin Pt shells on Au nanoparticle cores: facile synthesis and efficient synergetic catalysis. Journal of Materials Chemistry A, 2016, 4, 3278-3286.	5.2	45
57	Intermixed Adatom and Surfaceâ€Bound Adsorbates in Regular Selfâ€Assembled Monolayers of Racemic 2â€Butanethiol on Au(111). ChemPhysChem, 2015, 16, 928-932.	1.0	18
58	Graphene-supported platinum catalysts for fuel cells. Science Bulletin, 2015, 60, 864-876.	4.3	88
59	DNA Bases Assembled on the Au(110)/Electrolyte Interface: A Combined Experimental and Theoretical Study. Journal of Physical Chemistry B, 2015, 119, 3123-3134.	1.2	8
60	Porous poly(perfluorosulfonic acid) membranes for alkaline water electrolysis. Journal of Membrane Science, 2015, 493, 589-598.	4.1	48
61	Tuning the composition of metastable Co Ni Mg100â~â^ (OH)(OCH3) nanoplates for optimizing robust methane dry reforming catalyst. Journal of Catalysis, 2015, 330, 106-119.	3.1	67
62	Controlling the Stereochemistry and Regularity of Butanethiol Self-Assembled Monolayers on Au(111). Journal of the American Chemical Society, 2014, 136, 17087-17094.	6.6	31
63	Selective synthesis of clinoatacamite Cu2(OH)3Cl and tenorite CuO nanoparticles by pH control. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	28
64	Graphene controlled H- and J-stacking of perylene dyes into highly stable supramolecular nanostructures for enhanced photocurrent generation. Nanoscale, 2014, 6, 10516-10523.	2.8	23
65	Nanoporous gold assembly of glucose oxidase for electrochemical biosensing. Electrochimica Acta, 2014, 130, 559-567.	2.6	65
66	The challenges of testing metal and metal oxide nanoparticles in algal bioassays: titanium dioxide and gold nanoparticles as case studies. Nanotoxicology, 2013, 7, 1082-1094.	1.6	62
67	Ion Transfer Voltammetry Associated with Two Polarizable Interfaces Within Water and Moderately Hydrophobic Ionic Liquid Systems. Electroanalysis, 2013, 25, 857-866.	1.5	5
68	Direct measurement and modulation of single-molecule coordinative bonding forces in a transition metal complex. Nature Communications, 2013, 4, 2121.	5.8	43
69	Complexity of Gold Nanoparticle Formation Disclosed by Dynamics Study. Journal of Physical Chemistry C, 2013, 117, 11818-11828.	1.5	28
70	On the Hopping Efficiency of Nanoparticles in the Electron Transfer across Selfâ€Assembled Monolayers. ChemPhysChem, 2013, 14, 952-957.	1.0	24
71	Modeling and computations of the intramolecular electron transfer process in the two-heme protein cytochrome c4. Physical Chemistry Chemical Physics, 2012, 14, 5953.	1.3	14
72	Au-Biocompatible metallic nanostructures in metalloprotein electrochemistry and electrocatalysis. Journal of Materials Chemistry, 2012, 22, 13877.	6.7	8

#	Article	IF	CITATIONS
73	Voltammetry and Single-Molecule in Situ Scanning Tunneling Microscopy of Laccases and Bilirubin Oxidase in Electrocatalytic Dioxygen Reduction on Au(111) Single-Crystal Electrodes. Journal of Physical Chemistry C, 2012, 116, 1232-1243.	1.5	61
74	Polycation Induced Potential Dependent Structural Transitions of Oligonucleotide Monolayers on Au(111)-Surfaces. Journal of the American Chemical Society, 2012, 134, 19092-19098.	6.6	15
75	Spontaneous and Fast Growth of Largeâ€Area Graphene Nanofilms Facilitated by Oil/Water Interfaces. Advanced Materials, 2012, 24, 3958-3964.	11.1	66
76	Characterizing the Kinetics of Nanoparticleâ€Catalyzed Reactions by Surfaceâ€Enhanced Raman Scattering. Angewandte Chemie - International Edition, 2012, 51, 7592-7596.	7.2	157
77	Electrochemical Singleâ€Molecule AFM of the Redox Metalloenzyme Copper Nitrite Reductase in Action. ChemPhysChem, 2012, 13, 2919-2924.	1.0	20
78	Interfacial electrochemical electron transfer in biology – Towards the level of the single molecule. FEBS Letters, 2012, 586, 526-535.	1.3	41
79	Gold Mining by Alkanethiol Radicals: Vacancies and Pits in the Self-Assembled Monolayers of 1-Propanethiol and 1-Butanethiol on Au(111). Journal of Physical Chemistry C, 2011, 115, 10630-10639.	1.5	36
80	Adhesive properties of Staphylococcus epidermidis probed by atomic force microscopy. Physical Chemistry Chemical Physics, 2011, 13, 9995.	1.3	17
81	Chain-Branching Control of the Atomic Structure of Alkanethiol-Based Gold–Sulfur Interfaces. Journal of the American Chemical Society, 2011, 133, 14856-14859.	6.6	30
82	Electrochemically controlled self-assembled monolayers characterized with molecular and sub-molecular resolution. Physical Chemistry Chemical Physics, 2011, 13, 5526.	1.3	30
83	Distinct roles of extracellular polymeric substances in <i>Pseudomonas aeruginosa</i> biofilm development. Environmental Microbiology, 2011, 13, 1705-1717.	1.8	196
84	Investigation of Streptococcus mutans biofilm growth on modified Au(111)-surfaces using AFM and electrochemistry. Journal of Electroanalytical Chemistry, 2011, 656, 41-49.	1.9	10
85	1.7 nm Platinum Nanoparticles: Synthesis with Glucose Starch, Characterization and Catalysis. ChemPhysChem, 2010, 11, 2844-2853.	1.0	22
86	Adsorption of human insulin on single-crystal gold surfaces investigated by in situ scanning tunnelling microscopy and electrochemistry. Physical Chemistry Chemical Physics, 2010, 12, 9999.	1.3	14
87	Approach to Interfacial and Intramolecular Electron Transfer of the Diheme Protein Cytochrome <i>c</i> ₄ Assembled on Au(111) Surfaces. Journal of Physical Chemistry B, 2010, 114, 5617-5624.	1.2	34
88	Interfacial Electrochemical Electron Transfer Processes in Bacterial Biofilm Environments on Au(111). Langmuir, 2010, 26, 9094-9103.	1.6	13
89	Organic compounds inhibiting S. epidermidis adhesion and biofilm formation. Ultramicroscopy, 2009, 109, 881-888.	0.8	23
90	Scanning Tunneling Microscopic Observation of Adatom-Mediated Motifs on Goldâ^'Thiol Self-Assembled Monolayers at High Coverage. Journal of Physical Chemistry C, 2009, 113, 19601-19608.	1.5	26

#	Article	IF	CITATIONS
91	Long-Range Interfacial Electrochemical Electron Transfer of <i>Pseudomonas aeruginosa</i> Azurinâ^ Gold Nanoparticle Hybrid Systems. Journal of Physical Chemistry C, 2009, 113, 13993-14000.	1.5	43
92	Submolecular Electronic Mapping of Single Cysteine Molecules by in Situ Scanning Tunneling Imaging. Langmuir, 2009, 25, 2232-2240.	1.6	25
93	Green synthesis of gold nanoparticles with starch–glucose and application in bioelectrochemistry. Journal of Materials Chemistry, 2009, 19, 7839.	6.7	165
94	Single-Molecule Electron Transfer in Electrochemical Environments. Chemical Reviews, 2008, 108, 2737-2791.	23.0	276
95	Hydrogen Evolution on Supported Incomplete Cubane-type [Mo ₃ S ₄] ⁴⁺ Electrocatalysts. Journal of Physical Chemistry C, 2008, 112, 17492-17498.	1.5	218
96	Surface-induced intramolecular electron transfer in multi-centre redox metalloproteins: the di-haem protein cytochrome <i>c</i> ₄ in homogeneous solution and at electrochemical surfaces. Journal of Physics Condensed Matter, 2008, 20, 374124.	0.7	5
97	Charge Transfer And Interfacial Bioelectrochemistry At The Nanoscale And Single-Molecule Levels. , 2008, , 249-302.		6
98	Voltammetry and Electrocatalysis of Achromobacter Xylosoxidans Copper Nitrite Reductase on Functionalized Au(111)-Electrode Surfaces. Zeitschrift Fur Physikalische Chemie, 2007, 221, 1343-1378.	1.4	19
99	Single-Molecule Conductance of Redox Molecules in Electrochemical Scanning Tunneling Microscopyâ€. Journal of Physical Chemistry B, 2007, 111, 6703-6712.	1.2	100
100	Kinetics and Mechanism of the Acid Transition of the Active Site in Plastocyanin. Biochemistry, 2007, 46, 14619-14628.	1.2	9
101	Chemisorbed and Physisorbed Structures for 1,10-Phenanthroline and Dipyrido[3,2- <i>a</i> :2â€~,3â€~- <i>c</i>]phenazine on Au(111). Journal of Physical Chemistry C, 2007, 111, 17285-17296.	1.5	25
102	Oxygen-free in situ scanning tunnelling microscopy. Journal of Electroanalytical Chemistry, 2007, 599, 213-220.	1.9	43
103	Adsorption and In Situ Scanning Tunneling Microscopy of Cysteine on Au(111):Â Structure, Energy, and Tunneling Contrasts. Langmuir, 2006, 22, 7556-7567.	1.6	68
104	Surface Microscopic Structure and Electrochemical Rectification of a Branched Alkanethiol Self-Assembled Monolayer. Journal of Physical Chemistry B, 2006, 110, 1102-1106.	1.2	37
105	Assembled monolayers of Mo3S44+ clusters on well-defined surfaces. Dalton Transactions, 2006, , 3985.	1.6	31
106	Long-range interfacial electron transfer of metalloproteins based on molecular wiring assemblies. Faraday Discussions, 2006, 131, 181-195.	1.6	71
107	Voltammetry and In Situ Scanning Tunneling Microscopy of Cytochrome c Nitrite Reductase on Au(111) Electrodes. Biophysical Journal, 2006, 91, 3897-3906.	0.2	21
108	Assembly Dynamics and Detailed Structure of 1-Propanethiol Monolayers on Au(111) Surfaces Observed Real Time by in situ STM. Langmuir, 2006, 22, 6203-6213.	1.6	79

#	Article	IF	CITATIONS
109	Potential-induced structural transitions of DL-homocysteine monolayers on Au(111) electrode surfaces. Chemical Physics, 2005, 319, 210-221.	0.9	37
110	Electrochemistry and bioelectrochemistry towards the single-molecule level: Theoretical notions and systems. Electrochimica Acta, 2005, 50, 3143-3159.	2.6	51
111	Self-Assembly of Biomolecules on Electrode Surfaces; Oligonucleotides, Amino Acids, and Proteins toward the Single-Molecule Level. Perspectives in Bioanalysis, 2005, 1, 485-516.	0.3	12
112	Coexistence of Multiple Conformations in Cysteamine Monolayers on Au(111). Journal of Physical Chemistry B, 2005, 109, 15355-15367.	1.2	79
113	Thiol- and disulfide-modified oligonucleotide monolayer structures on polycrystalline and single-crystal Au(111) surfaces. Journal of Solid State Electrochemistry, 2004, 8, 474-481.	1.2	37
114	Dynamics of Ordered-Domain Formation of DNA fragments on Au(111) with Molecular Resolution. Angewandte Chemie - International Edition, 2004, 43, 198-203.	7.2	44
115	In situ STM Imaging and Direct Electrochemistry ofPyrococcusfuriosusFerredoxin Assembled on Thiolate-Modified Au(111) Surfaces. Langmuir, 2004, 20, 10200-10207.	1.6	53
116	Long-Range Order of Organized Oligonucleotide Monolayers on Au(111) Electrodes. Langmuir, 2004, 20, 1647-1655.	1.6	49
117	Electron Transfer and Redox Metalloenzyme Catalysis at the Single-Molecule Level. Israel Journal of Chemistry, 2004, 44, 89-100.	1.0	8
118	Nanoscale and Single-Molecule Interfacial Electron Transfer. Russian Journal of Electrochemistry, 2003, 39, 108-117.	0.3	6
119	In situ scanning tunnelling microscopy of redox molecules. Coherent electron transfer at large bias voltages. Journal of Electroanalytical Chemistry, 2003, 541, 133-146.	1.9	55
120	Adsorption and Interfacial Electron Transfer ofSaccharomycesCerevisiaeYeast CytochromecMonolayers on Au(111) Electrodes. Langmuir, 2003, 19, 3419-3427.	1.6	58
121	Catalytic Monolayer Voltammetry and In Situ Scanning Tunneling Microscopy of Copper Nitrite Reductase on Cysteamine-Modified Au(111) Electrodes. Journal of Physical Chemistry B, 2003, 107, 12480-12484.	1.2	50
122	Monolayer Assemblies of a De Novo Designed 4-α-Helix Bundle Carboprotein and Its Sulfur Anchor Fragment on Au(111) Surfaces Addressed by Voltammetry and In Situ Scanning Tunneling Microscopy. Journal of the American Chemical Society, 2003, 125, 94-104.	6.6	44
123	Electron transfer behaviour of biological macromolecules towards the single-molecule level. Journal of Physics Condensed Matter, 2003, 15, S1873-S1890.	0.7	26
124	Electronic Properties of Functional Biomolecules at Metal/Aqueous Solution Interfaces. Journal of Physical Chemistry B, 2002, 106, 1131-1152.	1.2	165
125	Monolayers of a de novo designed 4-α-helix bundle carboprotein and partial structures on Au(111)-surfaces. Bioelectrochemistry, 2002, 56, 27-32.	2.4	7
126	Organized Monolayers of Biological Macromolecules on Au(111) Surfaces. Russian Journal of Electrochemistry, 2002, 38, 68-76.	0.3	9

#	Article	IF	CITATIONS
127	Ordered Assembly and Controlled Electron Transfer of the Blue Copper Protein Azurin at Gold (111) Single-Crystal Substrates. Journal of Physical Chemistry B, 2001, 105, 4669-4679.	1.2	223
128	In situ scanning tunneling microscopy of maleic acid and fumaric acid adsorbed on Pt(111). Journal of Electroanalytical Chemistry, 2001, 500, 156-162.	1.9	3
129	Deuterium isotope effect on the intramolecular electron transfer in Pseudomonas aeruginosa azurin. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 4426-4430.	3.3	37
130	Two-Dimensional Cysteine and Cystine Cluster Networks on Au(111) Disclosed by Voltammetry and in Situ Scanning Tunneling Microscopy. Langmuir, 2000, 16, 7229-7237.	1.6	209
131	Creating nanoscale pits on solid surfaces in aqueous environment with scanning tunnelling microscopy. Surface Science, 2000, 463, L641-L648.	0.8	19
132	Molecular Monolayers and Interfacial Electron Transfer of Pseudomonas aeruginosa Azurin on Au(111). Journal of the American Chemical Society, 2000, 122, 4047-4055.	6.6	251
133	An approach to long-range electron transfer mechanisms in metalloproteins: In situ scanning tunneling microscopy with submolecular resolution. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 1379-1384.	3.3	135
134	Electrochemistry of self-assembled monolayers of the blue copper protein Pseudomonas aeruginosa azurin on Au(111). Electrochemistry Communications, 1999, 1, 91-96.	2.3	76
135	In situ scanning probe microscopy and new perspectives in analytical chemistry. TrAC - Trends in Analytical Chemistry, 1999, 18, 665-674.	5.8	7
136	Molecular Characterization of Beef Liver Catalase by Scanning Tunneling Microscopy. Electroanalysis, 1998, 10, 738-746.	1.5	23
137	In situ electrochemical scanning tunneling microscopy investigation of renewing graphite surface accompanied by electrochemical reaction. Surface Science, 1996, 364, L530-L539.	0.8	2
138	Orientation and electrocatalysis of riboflavin adsorbed on carbon substrate surfaces. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 1913.	1.7	12
139	In situ electrochemical scanning tunnelling microscopy investigation of structure for horseradish peroxidase and its electricatalytic property. Bioelectrochemistry, 1996, 39, 267-274.	1.0	69
140	A carbon single crystal electrode for an electrochemical quartz crystal microbalance study. Journal of Electroanalytical Chemistry, 1996, 419, 1-6.	1.9	12
141	A comparative study on stm imaging and electrocatalytic activity of different surfaces modified with flavin adenine dinucleotide. Electrochimica Acta, 1995, 40, 733-744.	2.6	26
142	STM investigation of HOPG superperiodic features caused by electrochemical pretreatment. Journal of Electroanalytical Chemistry, 1995, 399, 83-89.	1.9	16
143	STM of folded and unfolded haemoglobin molecules electrochemically deposited on highly oriented pyrolytic graphite. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 1471.	1.7	6
144	Direct electrochemistry and surface characterization of glucose oxidase adsorbed on anodized carbon electrodes. Electrochimica Acta, 1994, 39, 2431-2438.	2.6	78

#	Article	IF	CITATIONS
145	Ordered arrays of myoglobin adsorbed on the surfactant modified surface by scanning tunneling microscopy. Surface Science, 1994, 321, L195-L201.	0.8	2
146	Direct observation of native and unfolded glucose oxidase structures by scanning tunnelling microscopy. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 2057.	1.7	41