
Manuel V Borca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2820182/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	African Swine Fever Virus Georgia Isolate Harboring Deletions of MGF360 and MGF505 Genes Is Attenuated in Swine and Confers Protection against Challenge with Virulent Parental Virus. Journal of Virology, 2015, 89, 6048-6056.	1.5	234
2	Development of a Highly Effective African Swine Fever Virus Vaccine by Deletion of the 1177L Gene Results in Sterile Immunity against the Current Epidemic Eurasia Strain. Journal of Virology, 2020, 94, .	1.5	185
3	Simultaneous Deletion of the <i>9GL</i> and <i>UK</i> Genes from the African Swine Fever Virus Georgia 2007 Isolate Offers Increased Safety and Protection against Homologous Challenge. Journal of Virology, 2017, 91, .	1.5	150
4	African Swine Fever Virus Georgia 2007 with a Deletion of Virulence-Associated Gene <i>9GL</i> (B119L), when Administered at Low Doses, Leads to Virus Attenuation in Swine and Induces an Effective Protection against Homologous Challenge. Journal of Virology, 2015, 89, 8556-8566.	1.5	141
5	The Progressive Adaptation of a Georgian Isolate of African Swine Fever Virus to Vero Cells Leads to a Gradual Attenuation of Virulence in Swine Corresponding to Major Modifications of the Viral Genome. Journal of Virology, 2015, 89, 2324-2332.	1.5	125
6	African swine fever virus Georgia isolate harboring deletions of 9GL and MGF360/505 genes is highly attenuated in swine but does not confer protection against parental virus challenge. Virus Research, 2016, 221, 8-14.	1.1	107
7	Deletion of CD2-like gene from the genome of African swine fever virus strain Georgia does not attenuate virulence in swine. Scientific Reports, 2020, 10, 494.	1.6	73
8	Association of the Host Immune Response with Protection Using a Live Attenuated African Swine Fever Virus Model. Viruses, 2016, 8, 291.	1.5	71
9	CRISPR-Cas9, a tool to efficiently increase the development of recombinant African swine fever viruses. Scientific Reports, 2018, 8, 3154.	1.6	70
10	ASFV-G-â^†I177L as an Effective Oral Nasal Vaccine against the Eurasia Strain of Africa Swine Fever. Viruses, 2021, 13, 765.	1.5	65
11	Mechanisms of African swine fever virus pathogenesis and immune evasion inferred from gene expression changes in infected swine macrophages. PLoS ONE, 2019, 14, e0223955.	1.1	63
12	Patterns of cellular gene expression in swine macrophages infected with highly virulent classical swine fever virus strain Brescia. Virus Research, 2008, 138, 89-96.	1.1	62
13	Pathogenesis of highly virulent African swine fever virus in domestic pigs exposed via intraoropharyngeal, intranasopharyngeal, and intramuscular inoculation, and by direct contact with infected pigs. Virus Research, 2013, 178, 328-339.	1.1	61
14	Deletion of the A137R Gene from the Pandemic Strain of African Swine Fever Virus Attenuates the Strain and Offers Protection against the Virulent Pandemic Virus. Journal of Virology, 2021, 95, e0113921.	1.5	61
15	African swine fever virus vaccine candidate ASFVâ€G― Δ 1177L efficiently protects European and native pig breeds against circulating Vietnamese field strain. Transboundary and Emerging Diseases, 2022, 69, .	1.3	57
16	A partial deletion in non-structural protein 3A can attenuate foot-and-mouth disease virus in cattle. Virology, 2013, 446, 260-267.	1.1	54
17	The L83L ORF of African swine fever virus strain Georgia encodes for a non-essential gene that interacts with the host protein IL- $1\hat{l}^2$. Virus Research, 2018, 249, 116-123.	1.1	48
18	Deletion of CD2-Like (CD2v) and C-Type Lectin-Like (EP153R) Genes from African Swine Fever Virus Georgia-â^†9GL Abrogates Its Effectiveness as an Experimental Vaccine. Viruses, 2020, 12, 1185.	1.5	47

MANUEL V BORCA

#	Article	IF	CITATIONS
19	Development of a fluorescent ASFV strain that retains the ability to cause disease in swine. Scientific Reports, 2017, 7, 46747.	1.6	45
20	Effects of glycosylation on antigenicity and immunogenicity of classical swine fever virus envelope proteins. Virology, 2011, 420, 135-145.	1.1	44
21	Differential Effect of the Deletion of African Swine Fever Virus Virulence-Associated Genes in the Induction of Attenuation of the Highly Virulent Georgia Strain. Viruses, 2019, 11, 599.	1.5	40
22	Recombinant ASF Live Attenuated Virus Strains as Experimental Vaccine Candidates. Viruses, 2022, 14, 878.	1.5	39
23	Identification of a Continuously Stable and Commercially Available Cell Line for the Identification of Infectious African Swine Fever Virus in Clinical Samples. Viruses, 2020, 12, 820.	1.5	35
24	The MGF360-16R ORF of African Swine Fever Virus Strain Georgia Encodes for a Nonessential Gene That Interacts with Host Proteins SERTAD3 and SDCBP. Viruses, 2020, 12, 60.	1.5	35
25	Increased Virulence of an Epidemic Strain of Vesicular Stomatitis Virus Is Associated With Interference of the Innate Response in Pigs. Frontiers in Microbiology, 2018, 9, 1891.	1.5	31
26	CRISPR/Cas Gene Editing of a Large DNA Virus: African Swine Fever Virus. Bio-protocol, 2018, 8, e2978.	0.2	31
27	Role of arginine-56 within the structural protein VP3 of foot-and-mouth disease virus (FMDV) O1 Campos in virus virulence. Virology, 2012, 422, 37-45.	1.1	30
28	The region between the two polyprotein initiation codons of foot-and-mouth disease virus is critical for virulence in cattle. Virology, 2010, 396, 152-159.	1.1	28
29	Patterns of gene expression in swine macrophages infected with classical swine fever virus detected by microarray. Virus Research, 2010, 151, 10-18.	1.1	27
30	Interaction of CSFV E2 Protein with Swine Host Factors as Detected by Yeast Two-Hybrid System. PLoS ONE, 2014, 9, e85324.	1.1	26
31	Deletion of E184L, a Putative DIVA Target from the Pandemic Strain of African Swine Fever Virus, Produces a Reduction in Virulence and Protection against Virulent Challenge. Journal of Virology, 2022, 96, JVI0141921.	1.5	24
32	Domain disruptions of individual 3B proteins of foot-and-mouth disease virus do not alter growth in cell culture or virulence in cattle. Virology, 2010, 405, 149-156.	1.1	23
33	The Ep152R ORF of African swine fever virus strain Georgia encodes for an essential gene that interacts with host protein BAG6. Virus Research, 2016, 223, 181-189.	1.1	23
34	Early protection events in swine immunized with an experimental live attenuated classical swine fever marker vaccine, FlagT4G. PLoS ONE, 2017, 12, e0177433.	1.1	23
35	Development and In Vivo Evaluation of a MGF110-1L Deletion Mutant in African Swine Fever Strain Georgia. Viruses, 2021, 13, 286.	1.5	23
36	Identification of an NTPase motif in classical swine fever virus NS4B protein. Virology, 2011, 411, 41-49.	1.1	22

MANUEL V BORCA

#	Article	IF	CITATIONS
37	Experimental Infection of Domestic Pigs with an African Swine Fever Virus Field Strain Isolated in 2021 from the Dominican Republic. Viruses, 2022, 14, 1090.	1.5	22
38	Recoding structural glycoprotein E2 in classical swine fever virus (CSFV) produces complete virus attenuation in swine and protects infected animals against disease. Virology, 2016, 494, 178-189.	1.1	20
39	X69R Is a Non-Essential Gene That, When Deleted from African Swine Fever, Does Not Affect Virulence in Swine. Viruses, 2020, 12, 918.	1.5	20
40	Evaluation of the Function of the ASFV KP177R Gene, Encoding for Structural Protein p22, in the Process of Virus Replication and in Swine Virulence. Viruses, 2021, 13, 986.	1.5	20
41	Evaluation of an ASFV RNA Helicase Gene A859L for Virus Replication and Swine Virulence. Viruses, 2022, 14, 10.	1.5	20
42	The C962R ORF of African Swine Fever Strain Georgia Is Non-Essential and Not Required for Virulence in Swine. Viruses, 2020, 12, 676.	1.5	18
43	A partial deletion within foot-and-mouth disease virus non-structural protein 3A causes clinical attenuation in cattle but does not prevent subclinical infection. Virology, 2018, 516, 115-126.	1.1	17
44	Deletion of African Swine Fever Virus Histone-like Protein, A104R from the Georgia Isolate Drastically Reduces Virus Virulence in Domestic Pigs. Viruses, 2022, 14, 1112.	1.5	17
45	Morphologic and phenotypic characteristics of myocarditis in two pigs infected by foot-and mouth disease virus strains of serotypes O or A. Acta Veterinaria Scandinavica, 2014, 56, 42.	0.5	16
46	Development Real-Time PCR Assays to Genetically Differentiate Vaccinated Pigs From Infected Pigs With the Eurasian Strain of African Swine Fever Virus. Frontiers in Veterinary Science, 2021, 8, 768869.	0.9	16
47	Classical Swine Fever Virus p7 Protein Interacts with Host Protein CAMLG and Regulates Calcium Permeability at the Endoplasmic Reticulum. Viruses, 2018, 10, 460.	1.5	14
48	Evaluation in Swine of a Recombinant Georgia 2010 African Swine Fever Virus Lacking the I8L Gene. Viruses, 2021, 13, 39.	1.5	14
49	Evaluation of the Deletion of MGF110-5L-6L on Swine Virulence from the Pandemic Strain of African Swine Fever Virus and Use as a DIVA Marker in Vaccine Candidate ASFV-G-ΔI177L. Journal of Virology, 2022, 96, .	1.5	14
50	Interaction of Structural Glycoprotein E2 of Classical Swine Fever Virus with Protein Phosphatase 1 Catalytic Subunit Beta (PPP1CB). Viruses, 2019, 11, 307.	1.5	12
51	Deletion Mutants of the Attenuated Recombinant ASF Virus, BA71ΔCD2, Show Decreased Vaccine Efficacy. Viruses, 2021, 13, 1678.	1.5	11
52	Deletion of the H108R Gene Reduces Virulence of the Pandemic Eurasia Strain of African Swine Fever Virus with Surviving Animals Being Protected against Virulent Challenge. Journal of Virology, 2022, 96, .	1.5	11
53	SERTA Domain Containing Protein 1 (SERTAD1) Interacts with Classical Swine Fever Virus Structural Glycoprotein E2, Which Is Involved in Virus Virulence in Swine. Viruses, 2020, 12, 421.	1.5	10
54	Swine Host Protein Coiled-Coil Domain-Containing 115 (CCDC115) Interacts with Classical Swine Fever Virus Structural Glycoprotein E2 during Virus Replication. Viruses, 2020, 12, 388.	1.5	9

MANUEL V BORCA

#	Article	IF	CITATIONS
55	Deletion of the ASFV dUTPase Gene E165R from the Genome of Highly Virulent African Swine Fever Virus Georgia 2010 Does Not Affect Virus Replication or Virulence in Domestic Pigs. Viruses, 2022, 14, 1409.	1.5	8
56	A Single Amino Acid Substitution in the Matrix Protein (M51R) of Vesicular Stomatitis New Jersey Virus Impairs Replication in Cultured Porcine Macrophages and Results in Significant Attenuation in Pigs. Frontiers in Microbiology, 2020, 11, 1123.	1.5	7
57	Systemic antibodies administered by passive immunization prevent generalization of the infection by foot-and-mouth disease virus in cattle after oronasal challenge. Virology, 2018, 518, 143-151.	1.1	6
58	Validation of a site-specific recombination cloning technique for the rapid development of a full-length cDNA clone of a virulent field strain of vesicular stomatitis New Jersey virus. Journal of Virological Methods, 2019, 265, 113-116.	1.0	6
59	Development of a Dendrimeric Peptide-Based Approach for the Differentiation of Animals Vaccinated with FlagT4G against Classical Swine Fever from Infected Pigs. Viruses, 2021, 13, 1980.	1.5	3