Stephen S G Ferguson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2819999/publications.pdf

Version: 2024-02-01

83 papers 4,987 citations

35 h-index 95083 68 g-index

84 all docs 84 docs citations

84 times ranked 5316 citing authors

#	Article	IF	CITATIONS
1	The Role of Neuroglial Metabotropic Glutamate Receptors in Alzheimer's Disease. Current Neuropharmacology, 2023, 21, 273-283.	1.4	10
2	Noncanonical Metabotropic Glutamate Receptor 5 Signaling in Alzheimer's Disease. Annual Review of Pharmacology and Toxicology, 2022, 62, 235-254.	4.2	36
3	A positive allosteric modulator for the muscarinic receptor (M1 mAChR) improves pathology and cognitive deficits in female <scp>APPswe</scp> /PSEN1î"E9 mice. British Journal of Pharmacology, 2022, 179, 1769-1783.	2.7	14
4	Metabotropic Glutamate Receptor 5 Antagonism Reduces Pathology and Differentially Improves Symptoms in Male and Female Heterozygous zQ175 Huntington's Mice. Frontiers in Molecular Neuroscience, 2022, 15, 801757.	1.4	11
5	VGLUT3 ablation differentially modulates glutamate receptor densities in mouse brain. ENeuro, 2022, , ENEURO.0041-22.2022.	0.9	1
6	Optineurin deletion disrupts metabotropic glutamate receptor 5-mediated regulation of ERK1/2, GSK3β/ZBTB16, mTOR/ULK1 signaling in autophagy. Biochemical Pharmacology, 2021, 185, 114427.	2.0	15
7	Ablation of optineurin impairs metabotropic glutamate receptor 5 signaling in mouse hippocampus. FASEB Journal, 2021, 35, .	0.2	O
8	Metabotropic Glutamate Receptor 2/3 Activation Improves Motor Performance and Reduces Pathology in Heterozygous zQ175 Huntington Disease Mice. Journal of Pharmacology and Experimental Therapeutics, 2021, 379, 74-84.	1.3	12
9	mGluR5 Allosteric Modulation Promotes Neurorecovery in a 6-OHDA-Toxicant Model of Parkinson's Disease. Molecular Neurobiology, 2020, 57, 1418-1431.	1.9	25
10	Targeting VGLUT Machinery: Implications on mGluR5 Signaling and Behavior. Molecular Pharmacology, 2020, 98, MOLPHARM-MR-2020-000089.	1.0	14
11	mGluR5 regulates REST/NRSF signaling through N-cadherin/β-catenin complex in Huntington's disease. Molecular Brain, 2020, 13, 118.	1.3	20
12	Targeting Vesicular Glutamate Transporter Machinery: Implications on Metabotropic Glutamate Receptor 5 Signaling and Behavior. Molecular Pharmacology, 2020, 98, 314-327.	1.0	2
13	Aβ oligomers induce pathophysiological mGluR5 signaling in Alzheimer's disease model mice in a sex-selective manner. Science Signaling, 2020, 13, .	1.6	45
14	mGluR5 Contribution to Neuropathology in Alzheimer Mice Is Disease Stage-Dependent. ACS Pharmacology and Translational Science, 2020, 3, 334-344.	2.5	34
15	Structural determinants governing \hat{l}^2 -arrestin2 interaction with PDZ proteins and recruitment to CRFR1. Cellular Signalling, 2019, 63, 109361.	1.7	9
16	Modulation of mTOR and CREB pathways following mGluR5 blockade contribute to improved Huntington's pathology in zQ175 mice. Molecular Brain, 2019, 12, 35.	1.3	67
17	Neuronal scaffolding protein spinophilin is integral for cocaine-induced behavioral sensitization and ERK1/2 activation. Molecular Brain, 2019, 12, 15.	1.3	22
18	Super-Resolution Imaging of G Protein-Coupled Receptors Using Ground State Depletion Microscopy. Methods in Molecular Biology, 2019, 1947, 323-336.	0.4	3

#	Article	IF	CITATIONS
19	Methods to Investigate the Roles of \hat{l}^2 -Arrestin-Dependent RalGDS Activation in GPCR-Stimulated Membrane Blebbing. Methods in Molecular Biology, 2019, 1957, 169-175.	0.4	O
20	mGluR5 regulates ZBTB16 pathway of autophagy in Alzheimer's disease in a sexâ€specific manner. FASEB Journal, 2019, 33, 810.5.	0.2	1
21	MAGI proteins can differentially regulate the signaling pathways of 5-HT 2A R by enhancing receptor trafficking and PLC recruitment. Cellular Signalling, 2018, 47, 109-121.	1.7	6
22	Autophagy is increased following either pharmacological or genetic silencing of mGluR5 signaling in Alzheimer's disease mouse models. Molecular Brain, 2018, 11, 19.	1.3	38
23	GRK2 knockdown in mice exacerbates kidney injury and alters renal mechanisms of blood pressure regulation. Scientific Reports, 2018, 8, 11415.	1.6	10
24	Metabotropic glutamate receptor 5 (mGluR5) blockade ameliorates Huntington's disease pathology via activating convergent mechanisms of autophagy. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, OR24-3.	0.0	0
25	Role of Dynein Axonemal Heavy Chain 6 Gene Expression as a Possible Biomarker for Huntington's Disease: a Translational Study. Journal of Molecular Neuroscience, 2017, 63, 342-348.	1.1	4
26	Metabotropic glutamate receptors and neurodegenerative diseases. Pharmacological Research, 2017, 115, 179-191.	3.1	194
27	mGluR5 antagonism increases autophagy and prevents disease progression in the <i>zQ175</i> mouse model of Huntington's disease. Science Signaling, 2017, 10, .	1.6	70
28	MAGI Proteins Regulate the Trafficking and Signaling of Corticotropin-Releasing Factor Receptor 1via a Compensatory Mechanism. Journal of Molecular Signaling, 2016, $11, 5.$	0.5	6
29	Role of Spinophilin in Group I Metabotropic Glutamate Receptor Endocytosis, Signaling, and Synaptic Plasticity. Journal of Biological Chemistry, 2016, 291, 17602-17615.	1.6	23
30	Orchestrated activation of mGluR5 and CB1 promotes neuroprotection. Molecular Brain, 2016, 9, 80.	1.3	18
31	Vascular Smooth Muscle-Specific EP4 Receptor Deletion in Mice Exacerbates Angiotensin II-Induced Renal Injury. Antioxidants and Redox Signaling, 2016, 25, 642-656.	2.5	12
32	Chronic Pharmacological mGluR5 Inhibition Prevents Cognitive Impairment and Reduces Pathogenesis in an Alzheimer Disease Mouse Model. Cell Reports, 2016, 15, 1859-1865.	2.9	95
33	PSD-95 regulates CRFR1 localization, trafficking and \hat{l}^2 -arrestin2 recruitment. Cellular Signalling, 2016, 28, 531-540.	1.7	24
34	Controlled positioning of analytes and cells on a plasmonic platform for glycan sensing using surface enhanced Raman spectroscopy. Chemical Science, 2016, 7, 575-582.	3.7	31
35	Suppression of piriform cortex activity in rat by corticotropin-releasing factor 1 and serotonin 2A/C receptors. Frontiers in Cellular Neuroscience, 2015, 09, 200.	1.8	13
36	MIISR: Molecular Interactions in Super-Resolution Imaging Enables the Analysis of Protein Interactions, Dynamics and Formation of Multi-protein Structures. PLoS Computational Biology, 2015, 11, e1004634.	1.5	47

#	Article	IF	Citations
37	GRK2 Targeted Knock-down Results in Spontaneous Hypertension, and Altered Vascular GPCR Signaling. Journal of Biological Chemistry, 2015, 290, 5141-5155.	1.6	22
38	PDZK1/NHERF3 Differentially Regulates Corticotropin-releasing Factor Receptor 1 and Serotonin 2A Receptor Signaling and Endocytosis. Cellular Signalling, 2015, 27, 519-531.	1.7	29
39	Minireview: Role of Intracellular Scaffolding Proteins in the Regulation of Endocrine G Protein-Coupled Receptor Signaling. Molecular Endocrinology, 2015, 29, 814-830.	3.7	32
40	Role of cystic fibrosis transmembrane conductance regulator-associated ligand (CAL) in regulating the trafficking and signaling of corticotropin-releasing factor receptor 1. Cellular Signalling, 2015, 27, 2120-2130.	1.7	9
41	Glutamate receptors function as scaffolds for the regulation of \hat{l}^2 -amyloid and cellular prion protein signaling complexes. Molecular Brain, 2015, 8, 18.	1.3	59
42	Ca2+/Calmodulin-dependent protein Kinase II interacts with group I Metabotropic Glutamate and facilitates Receptor Endocytosis and ERK1/2 signaling: role of β-Amyloid. Molecular Brain, 2015, 8, 21.	1.3	36
43	The metabotropic glutamate receptor 5 role on motor behavior involves specific neural substrates. Molecular Brain, 2015, 8, 24.	1.3	27
44	PDZ Protein Regulation of G Protein–Coupled Receptor Trafficking and Signaling Pathways. Molecular Pharmacology, 2015, 88, 624-639.	1.0	98
45	A Dopamine D2 Receptor-DISC1 Protein Complex may Contribute to Antipsychotic-Like Effects. Neuron, 2014, 84, 1302-1316.	3.8	91
46	Metabotropic glutamate receptor 5 knockout promotes motor and biochemical alterations in a mouse model of Huntington's disease. Human Molecular Genetics, 2014, 23, 2030-2042.	1.4	44
47	Metabotropic glutamate receptor 5 as a potential therapeutic target in Huntington's disease. Expert Opinion on Therapeutic Targets, 2014, 18, 1293-1304.	1.5	19
48	Role of SAP97 in the Regulation of 5-HT2AR Endocytosis and Signaling. Molecular Pharmacology, 2014, 86, 275-283.	1.0	22
49	Metabotropic glutamate receptor 5 knockout reduces cognitive impairment and pathogenesis in a mouse model of Alzheimer's disease. Molecular Brain, 2014, 7, 40.	1.3	107
50	mGluR5: a potential target for the treatment of Huntington's disease. Future Neurology, 2014, 9, 289-293.	0.9	0
51	Role of metabotropic glutamate receptor 5 signaling and homer in oxygen glucose deprivation-mediated astrocyte apoptosis. Molecular Brain, 2013, 6, 9.	1.3	35
52	Regulation of G protein-coupled receptor trafficking and signaling by Rab GTPases. Small GTPases, 2013, 4, 132-135.	0.7	13
53	Somatic Mutations in GRM1 in Cancer Alter Metabotropic Glutamate Receptor 1 Intracellular Localization and Signaling. Molecular Pharmacology, 2013, 83, 770-780.	1.0	28
54	Role of SAP97 Protein in the Regulation of Corticotropin-releasing Factor Receptor 1 Endocytosis and Extracellular Signal-regulated Kinase 1/2 Signaling. Journal of Biological Chemistry, 2013, 288, 15023-15034.	1.6	26

#	Article	IF	Citations
55	Rab8 Modulates Metabotropic Glutamate Receptor Subtype 1 Intracellular Trafficking and Signaling in a Protein Kinase C-Dependent Manner. Journal of Neuroscience, 2012, 32, 16933-16942.	1.7	36
56	Regulation of GPCR activity, trafficking and localization by GPCRâ€interacting proteins. British Journal of Pharmacology, 2012, 165, 1717-1736.	2.7	294
57	Huntington's Disease and Group I Metabotropic Glutamate Receptors. Molecular Neurobiology, 2011, 43, 1-11.	1.9	47
58	Pyk2 uncouples metabotropic glutamate receptor G protein signaling but facilitates ERK1/2 activation. Molecular Brain, 2010, 3, 4.	1.3	40
59	CRF receptor 1 regulates anxiety behavior via sensitization of 5-HT2 receptor signaling. Nature Neuroscience, 2010, 13, 622-629.	7.1	176
60	Group I Metabotropic Glutamate Receptor Signalling and its Implication in Neurological Disease. CNS and Neurological Disorders - Drug Targets, 2010, 9, 574-595.	0.8	136
61	The Angiotensin II Type 1 Receptor Induces Membrane Blebbing by Coupling to Rho A, Rho Kinase, and Myosin Light Chain Kinase. Molecular Pharmacology, 2010, 77, 903-911.	1.0	40
62	Metabotropic Glutamate Receptor-Mediated Cell Signaling Pathways Are Altered in a Mouse Model of Huntington's Disease. Journal of Neuroscience, 2010, 30, 316-324.	1.7	83
63	Phosphorylation-independent Regulation of Metabotropic Glutamate Receptor 5 Desensitization and Internalization by G Protein-coupled Receptor Kinase 2 in Neurons. Journal of Biological Chemistry, 2009, 284, 23444-23453.	1.6	63
64	Calcineurin Inhibitor Protein (CAIN) Attenuates Group I Metabotropic Glutamate Receptor Endocytosis and Signaling. Journal of Biological Chemistry, 2009, 284, 28986-28994.	1.6	14
65	Phosphorylation-independent attenuation of GPCR signalling. Trends in Pharmacological Sciences, 2007, 28, 173-179.	4.0	104
66	Differential regulation of corticotropin releasing factor 1alpha receptor endocytosis and trafficking by beta-arrestins and Rab GTPases. Journal of Neurochemistry, 2006, 96, 934-949.	2.1	81
67	Regulation of metabotropic glutamate receptor signaling, desensitization and endocytosis., 2006, 111, 260-271.		180
68	Inhibition of Metabotropic Glutamate Receptor Signaling by the Huntingtin-binding Protein Optineurin. Journal of Biological Chemistry, 2005, 280, 34840-34848.	1.6	127
69	Phosphorylation-independent Regulation of Metabotropic Glutamate Receptor 1 Signaling Requires G Protein-coupled Receptor Kinase 2 Binding to the Second Intracellular Loop. Journal of Biological Chemistry, 2005, 280, 24420-24427.	1.6	46
70	Green Fluorescent Protein-Tagged \hat{l}^2 -Arrestin Translocation as a Measure of G Protein-Coupled Receptor Activation. , 2004, 237, 121-126.		55
71	Ral and Phospholipase D2-Dependent Pathway for Constitutive Metabotropic Glutamate Receptor Endocytosis. Journal of Neuroscience, 2004, 24, 8752-8761.	1.7	82
72	Regulation of G protein-coupled receptor endocytosis and trafficking by Rab GTPases. Life Sciences, 2003, 74, 225-235.	2.0	184

#	Article	IF	CITATIONS
73	Phosphorylation-independent Regulation of Metabotropic Glutamate Receptor Signaling by G Protein-coupled Receptor Kinase 2. Journal of Biological Chemistry, 2002, 277, 25266-25272.	1.6	97
74	Rab5 Association with the Angiotensin II Type 1A Receptor Promotes Rab5 GTP Binding and Vesicular Fusion. Journal of Biological Chemistry, 2002, 277, 679-685.	1.6	117
75	β-Arrestins regulate a Ral-GDS–Ral effector pathway that mediates cytoskeletal reorganization. Nature Cell Biology, 2002, 4, 547-555.	4.6	129
76	Spatial-Temporal Patterning of Metabotropic Glutamate Receptor-mediated Inositol 1,4,5-Triphosphate, Calcium, and Protein Kinase C Oscillations. Journal of Biological Chemistry, 2001, 276, 35900-35908.	1.6	64
77	Regulation of tyrosine kinase activation and granule release through \hat{l}^2 -arrestin by CXCR1. Nature Immunology, 2000, 1, 227-233.	7.0	215
78	Receptor/ \hat{I}^2 -Arrestin Complex Formation and the Differential Trafficking and Resensitization of \hat{I}^2 2-Adrenergic and Angiotensin II Type 1A Receptors. Molecular Endocrinology, 2000, 14, 2040-2053.	3.7	93
79	G Protein-coupled Receptor Kinase-mediated Desensitization of Metabotropic Glutamate Receptor 1A Protects against Cell Death. Journal of Biological Chemistry, 2000, 275, 38213-38220.	1.6	111
80	G-Protein–Coupled Receptor Kinase Activity in Hypertension. Hypertension, 2000, 35, 38-42.	1.3	138
81	Cellular Trafficking of G Protein-coupled Receptor/ \hat{l}^2 -Arrestin Endocytic Complexes. Journal of Biological Chemistry, 1999, 274, 10999-11006.	1.6	199
82	A \hat{I}^2 -Arrestin/Green Fluorescent Protein Biosensor for Detecting G Protein-coupled Receptor Activation. Journal of Biological Chemistry, 1997, 272, 27497-27500.	1.6	402
83	Amyloid \hat{l}' Oligomers Induce Sex-Specific Pathophysiological mGluR5 Signaling in Alzheimer Mice. SSRN Electronic Journal, 0 , , .	0.4	4