Masahiro Yamashina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2819763/publications.pdf

Version: 2024-02-01

19	927	13	19
papers	citations	h-index	g-index
20	20	20	942
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Preparation of Highly Fluorescent Host–Guest Complexes with Tunable Color upon Encapsulation. Journal of the American Chemical Society, 2015, 137, 9266-9269.	13.7	183
2	Safe storage of radical initiators within a polyaromatic nanocapsule. Nature Communications, 2014, 5, 4662.	12.8	177
3	A polyaromatic nanocapsule as a sucrose receptor in water. Science Advances, 2017, 3, e1701126.	10.3	98
4	Coordination-driven Nanostructures with Polyaromatic Shells. Chemistry Letters, 2017, 46, 163-171.	1.3	77
5	Anticancer Potencies of Pt ^{II} ―and Pd ^{II} â€linked M ₂ L ₄ Coordination Capsules with Improved Selectivity. Chemistry - an Asian Journal, 2016, 11, 474-477.	3.3	61
6	Cramming versus threading of long amphiphilic oligomers into a polyaromatic capsule. Nature Communications, 2018, 9, 4227.	12.8	50
7	M ₂ L ₄ coordination capsules with tunable anticancer activity upon guest encapsulation. Dalton Transactions, 2016, 45, 13214-13221.	3.3	46
8	A polyaromatic receptor with high androgen affinity. Science Advances, 2019, 5, eaav3179.	10.3	39
9	Recognition and Stabilization of Unsaturated Fatty Acids by a Polyaromatic Receptor. Angewandte Chemie - International Edition, 2020, 59, 10489-10492.	13.8	38
10	Hydrophilic Oligo(lactic acid)s Captured by a Hydrophobic Polyaromatic Cavity in Water. Angewandte Chemie - International Edition, 2018, 57, 3706-3710.	13.8	37
11	Exact mass analysis of sulfur clusters upon encapsulation by a polyaromatic capsular matrix. Nature Communications, 2017, 8, 749.	12.8	33
12	Recognition of Multiple Methyl Groups on Aromatic Rings by a Polyaromatic Cavity. Chemistry - A European Journal, 2016, 22, 14147-14150.	3.3	27
13	Open versus Closed Polyaromatic Nanocavity: Enhanced Host Abilities toward Large Dyes and Pigments. Chemistry - A European Journal, 2019, 25, 4320-4324.	3.3	20
14	Hydrophilic Oligo(lactic acid)s Captured by a Hydrophobic Polyaromatic Cavity in Water. Angewandte Chemie, 2018, 130, 3768-3772.	2.0	11
15	Recognition and Stabilization of Unsaturated Fatty Acids by a Polyaromatic Receptor. Angewandte Chemie, 2020, 132, 10575-10578.	2.0	10
16	Selfâ€Assembly Process of a Pd ₂ L ₄ Capsule: Steric Interactions between Neighboring Components Favor the Formation of Large Intermediates. Chemistry - A European Journal, 2018, 24, 3965-3969.	3.3	9
17	Synthesis of Azaylideâ€Based Amphiphiles by the Staudinger Reaction. Angewandte Chemie - International Edition, 2021, 60, 17915-17919.	13.8	8
18	Structure and Photophysical Properties of 1,1,2,2â€Tetra(1â€anthryl)ethane: A C(sp3)–C(sp3) Bond Substituted with Four Anthracene Units. ChemPlusChem, 2021, , .	2.8	2

#	Article	IF	CITATIONS
19	Synthesis of Azaylideâ€Based Amphiphiles by the Staudinger Reaction. Angewandte Chemie, 2021, 133, 18059-18063.	2.0	1