Azhar Fakharuddin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/281935/publications.pdf

Version: 2024-02-01

53 papers 3,922 citations

201674 27 h-index 51 g-index

53 all docs 53 docs citations

53 times ranked 5771 citing authors

#	Article	IF	CITATIONS
1	Modulating defect density of NiO hole transport layer via tuning interfacial oxygen stoichiometry in perovskite solar cells. Solar Energy, 2022, 233, 326-336.	6.1	15
2	Oxygen vacancies in oxidized and reduced vertically aligned \hat{l}_{\pm} -MoO ₃ nanoblades. Materials Advances, 2022, 3, 3571-3581.	5.4	6
3	Defect passivation in perovskite solar cells using an amino-functionalized BODIPY fluorophore. Sustainable Energy and Fuels, 2022, 6, 2570-2580.	4.9	7
4	Perovskite light-emitting diodes. Nature Electronics, 2022, 5, 203-216.	26.0	268
5	Mesoporous SnO ₂ Nanoparticle-Based Electron Transport Layer for Perovskite Solar Cells. ACS Applied Nano Materials, 2022, 5, 7822-7830.	5.0	9
6	Robust Inorganic Hole Transport Materials for Organic and Perovskite Solar Cells: Insights into Materials Electronic Properties and Device Performance. Solar Rrl, 2021, 5, 2000555.	5.8	34
7	Double Charge Transfer Dominates in Carrier Localization in Low Bandgap Sites of Heterogeneous Lead Halide Perovskites. Advanced Functional Materials, 2021, 31, 2010076.	14.9	17
8	Pseudoâ€Halide Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2100818.	19.5	56
9	Fiberâ€Shaped Electronic Devices. Advanced Energy Materials, 2021, 11, 2101443.	19.5	74
10	Advances in solution-processed near-infrared light-emitting diodes. Nature Photonics, 2021, 15, 656-669.	31.4	136
11	Roadmap on organic–inorganic hybrid perovskite semiconductors and devices. APL Materials, 2021, 9, .	5.1	102
12	Enhanced Organic and Perovskite Solar Cell Performance through Modification of the Electron-Selective Contact with a Bodipy–Porphyrin Dyad. ACS Applied Materials & Samp; Interfaces, 2020, 12, 1120-1131.	8.0	27
13	Performance enhancement of CsPbi2Br perovskite solar cells via stoichiometric control and interface engineering. Solar Energy, 2020, 211, 654-660.	6.1	9
14	Light emission from perovskite materials. APL Materials, 2020, 8, 070401.	5.1	12
15	Optimizing Performance and Operational Stability of CsPbI ₃ Quantum-Dot-Based Light-Emitting Diodes by Interface Engineering. ACS Applied Electronic Materials, 2020, 2, 2525-2534.	4.3	24
16	Suppressing the Photocatalytic Activity of Zinc Oxide Electron-Transport Layer in Nonfullerene Organic Solar Cells with a Pyrene-Bodipy Interlayer. ACS Applied Materials & Samp; Interfaces, 2020, 12, 21961-21973.	8.0	57
17	Molecular materials as interfacial layers and additives in perovskite solar cells. Chemical Society Reviews, 2020, 49, 4496-4526.	38.1	130
18	A carbon-doped tantalum dioxyfluoride as a superior electron transport material for high performance organic optoelectronics. Nano Energy, 2020, 70, 104508.	16.0	8

#	Article	IF	CITATIONS
19	Reduced Efficiency Rollâ€Off and Improved Stability of Mixed 2D/3D Perovskite Light Emitting Diodes by Balancing Charge Injection. Advanced Functional Materials, 2019, 29, 1904101.	14.9	93
20	Lithium Doping of ZnO for High Efficiency and Stability Fullerene and Non-fullerene Organic Solar Cells. ACS Applied Energy Materials, 2019, 2, 1663-1675.	5.1	52
21	Exploiting Twoâ€Step Processed Mixed 2D/3D Perovskites for Bright Green Light Emitting Diodes. Advanced Optical Materials, 2019, 7, 1900465.	7.3	18
22	Surface Band Bending Influences the Open-Circuit Voltage of Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 4045-4052.	5.1	15
23	Inorganic and Layered Perovskites for Optoelectronic Devices. Advanced Materials, 2019, 31, e1807095.	21.0	94
24	Quantification of ion migration in CH ₃ NH ₃ PbI ₃ perovskite solar cells by transient capacitance measurements. Materials Horizons, 2019, 6, 1497-1503.	12.2	297
25	Role of the Metal-Oxide Work Function on Photocurrent Generation in Hybrid Solar Cells. Scientific Reports, 2018, 8, 3559.	3.3	47
26	A Comparative Study of Lightâ€Emitting Diodes Based on Allâ€Inorganic Perovskite Nanoparticles (CsPbBr ₃) Synthesized at Room Temperature and by a Hotâ€Injection Method. ChemPlusChem, 2018, 83, 294-299.	2.8	27
27	A silanol-functionalized polyoxometalate with excellent electron transfer mediating behavior to ZnO and TiO ₂ cathode interlayers for highly efficient and extremely stable polymer solar cells. Journal of Materials Chemistry C, 2018, 6, 1459-1469.	5. 5	25
28	Interface-Dependent Radiative and Nonradiative Recombination in Perovskite Solar Cells. Journal of Physical Chemistry C, 2018, 122, 10691-10698.	3.1	40
29	Hybrid Organic/Inorganic and Perovskite Solar Cells. Green Chemistry and Sustainable Technology, 2018, , 187-227.	0.7	2
30	Tuning optical/electrical properties of 2D/3D perovskite by the inclusion of aromatic cation. Physical Chemistry Chemical Physics, 2018, 20, 30189-30199.	2.8	22
31	Perovskite-Polymer Blends Influencing Microstructures, Nonradiative Recombination Pathways, and Photovoltaic Performance of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 42542-42551.	8.0	50
32	Insights into the passivation effect of atomic layer deposited hafnium oxide for efficiency and stability enhancement in organic solar cells. Journal of Materials Chemistry C, 2018, 6, 8051-8059.	5.5	20
33	Improving pore-filling in TiO2 nanorods and nanotubes scaffolds for perovskite solar cells via methylamine gas healing. Solar Energy, 2018, 170, 541-548.	6.1	8
34	Advances in hole transport materials engineering for stable and efficient perovskite solar cells. Nano Energy, 2017, 34, 271-305.	16.0	362
35	Interfaces in Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700623.	19.5	276
36	Insights into optoelectronic properties of anti-solvent treated perovskite films. Journal of Materials Science: Materials in Electronics, 2017, 28, 15630-15636.	2,2	8

3

#	Article	IF	Citations
37	Humidity versus photo-stability of metal halide perovskite films in a polymer matrix. Physical Chemistry Chemical Physics, 2016, 18, 21629-21639.	2.8	75
38	Research Update: Behind the high efficiency of hybrid perovskite solar cells. APL Materials, 2016, 4, .	5.1	47
39	SnO2–TiO2 hybrid nanofibers for efficient dye-sensitized solar cells. Solar Energy, 2016, 132, 395-404.	6.1	44
40	Progress, challenges and perspectives in flexible perovskite solar cells. Energy and Environmental Science, 2016, 9, 3007-3035.	30.8	345
41	Mesoporous titania–vertical nanorod films with interfacial engineering for high performance dye-sensitized solar cells. Nanotechnology, 2015, 26, 105401.	2.6	20
42	Role of morphology and crystallinity of nanorod and planar electron transport layers on the performance and long term durability of perovskite solar cells. Journal of Power Sources, 2015, 283, 61-67.	7.8	106
43	One pot synthesis of multi-functional tin oxide nanostructures forÂhigh efficiency dye-sensitized solar cells. Journal of Alloys and Compounds, 2015, 646, 32-39.	5.5	13
44	Vertical TiO ₂ Nanorods as a Medium for Stable and High-Efficiency Perovskite Solar Modules. ACS Nano, 2015, 9, 8420-8429.	14.6	174
45	Tin oxide as a photoanode for dye-sensitised solar cells: Current progress and future challenges. Journal of Power Sources, 2015, 293, 1039-1052.	7.8	101
46	Solid state perovskite solar modules by vacuum-vapor assisted sequential deposition on Nd:YVO ₄ laser patterned rutile TiO ₂ nanorods. Nanotechnology, 2015, 26, 494002.	2.6	26
47	Multiporous nanofibers of SnO ₂ by electrospinning for high efficiency dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 17427-17434.	10.3	74
48	Charge transport through split photoelectrodes in dye-sensitized solar cells. Journal of Applied Physics, 2014, 115, 164509.	2.5	15
49	A perspective on the production of dye-sensitized solar modules. Energy and Environmental Science, 2014, 7, 3952-3981.	30.8	381
50	Channeling of electron transport to improve collection efficiency in mesoporous titanium dioxide dye sensitized solar cell stacks. Applied Physics Letters, 2014, 104, 053905.	3.3	13
51	Standardization of photoelectrode area of dye-sensitized solar cells. RSC Advances, 2013, 3, 2683.	3.6	31
52	Probing Electron Lifetime and Recombination Dynamics in Large Area Dye-Sensitized Solar Cells by Electrochemical Impedance Spectroscopy. Advanced Materials Research, 0, 925, 553-558.	0.3	7
53	Functionalized BODIPYs as Tailorâ€Made and Universal Interlayers for Efficient and Stable Organic and Perovskite Solar Cells. Advanced Materials Interfaces, 0, , 2102324.	3.7	3