
Vito Logar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2818960/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Implementation of an Evolving Fuzzy Model (eFuMo) in a Monitoring System for a Waste-Water Treatment Process. IEEE Transactions on Fuzzy Systems, 2015, 23, 1761-1776.	9.8	110
2	Modeling and Validation of an Electric Arc Furnace: Part 1, Heat and Mass Transfer. ISIJ International, 2012, 52, 402-412.	1.4	62
3	Mathematical Modeling and Experimental Validation of an Electric Arc Furnace. ISIJ International, 2011, 51, 382-391.	1.4	46
4	Modeling and Validation of an Electric Arc Furnace: Part 2, Thermo-chemistry. ISIJ International, 2012, 52, 413-423.	1.4	36
5	Optimization of the Electric Arc Furnace Process. IEEE Transactions on Industrial Electronics, 2019, 66, 8030-8039.	7.9	27
6	Remote Multivariable Control Design Using a Competition Game. IEEE Transactions on Education, 2011, 54, 97-103.	2.4	24
7	Using a fuzzy black-box model to estimate the indoor illuminance in buildings. Energy and Buildings, 2014, 70, 343-351.	6.7	24
8	Comprehensive Electric Arc Furnace Model for Simulation Purposes and Model-Based Control. Steel Research International, 2017, 88, 1600083.	1.8	23
9	Kinetic model of drug distribution in the urinary bladder wall following intravesical instillation. International Journal of Pharmaceutics, 2006, 322, 52-59.	5.2	21
10	Modeling and Validation of the Radiative Heat Transfer in an Electric Arc Furnace. ISIJ International, 2012, 52, 1225-1232.	1.4	20
11	Low Computational-complexity Model of EAF Arc-heat Distribution. ISIJ International, 2015, 55, 1353-1360.	1.4	19
12	Solving the sales prediction problem with fuzzy evolving methods. , 2012, , .		18
13	Indoor-environment simulator for control design purposes. Building and Environment, 2013, 70, 60-72.	6.9	15
14	A Computational Model for Heat Transfer Coefficient Estimation in Electric Arc Furnace. Steel Research International, 2016, 87, 330-338.	1.8	15
15	Solving the sales prediction problem with fuzzy evolving methods. , 2012, , .		13
16	Soft sensor of bath temperature in an electric arc furnace based on a data-driven Takagi–Sugeno fuzzy model. Applied Soft Computing Journal, 2021, 113, 107949.	7.2	13
17	Using ANNs to predict a subject's response based on EEG traces. Neural Networks, 2008, 21, 881-887.	5.9	11
18	Artificial and real laboratory environment in an e-learning competition. Mathematics and Computers in Simulation, 2011, 82, 517-524.	4.4	11

Vito Logar

#	Article	IF	CITATIONS
19	Identification of the phase code in an EEG during gripping-force tasks: A possible alternative approach to the development of the brain-computer interfaces. Artificial Intelligence in Medicine, 2008, 44, 41-49.	6.5	9
20	The Influence of Electric-Arc-Furnace Input Feeds on its Electrical Energy Consumption. Journal of Sustainable Metallurgy, 2021, 7, 1013-1026.	2.3	9
21	Gripping-force identification using EEG and phase-demodulation approach. Neuroscience Research, 2008, 60, 389-396.	1.9	8
22	Development of an Electric Arc Furnace Simulator Considering Thermal, Chemical and Electrical Aspects. ISIJ International, 2012, 52, 1924-1926.	1.4	8
23	Modelling and Simulation of the Melting Process in Electric Arc Furnaces—Influence of Numerical Solution Methods. Steel Research International, 2016, 87, 581-588.	1.8	8
24	Data-Driven Modelling and Optimization of Energy Consumption in EAF. Metals, 2022, 12, 816.	2.3	8
25	EAF Heat Recovery from Incident Radiation on Water-Cooled Panels Using a Thermophotovoltaic System: A Conceptual Study. Steel Research International, 2018, 89, 1700446.	1.8	5
26	Brain–computer interface analysis of a dynamic visuo-motor task. Artificial Intelligence in Medicine, 2011, 51, 43-51.	6.5	4
27	Remote laboratory for e-learning of multivariable control design. , 2008, , .		2
28	Visuo-Motor Tasks in a Brain-Computer Interface Analysis. , 2011, , .		2
29	Motivation Experiments for Complex Control Systems Education. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 268-273.	0.4	2
30	Additional Slag Doors for Increased EAF Efficiency: A Conceptual Study. ISIJ International, 2017, 57, 1394-1399.	1.4	1
31	IDENTIFICATION OF HUMAN GRIPPING-FORCE CONTROL FROM ELECTRO-ENCEPHALOGRAPHIC SIGNALS BY ARTIFICIAL NEURAL NETWORKS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 231-236.	0.4	0
32	Modelling and Simulation Experimentation through E-CHO Learning Environment. , 2013, , .		0
33	The Role of Internet-Accessible Laboratory Plants in the Teaching of Automatic Control. , 2012, , 144-162.		0
34	Identification of Motor Functions Based on an EEG Analysis. Advances in Medical Technologies and Clinical Practice Book Series, 2012, , 172-186.	0.3	0