
He Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2818319/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Colocalized, bidirectional optogenetic modulations in freely behaving mice with a wireless dual-color optoelectronic probe. Nature Communications, 2022, 13, 839.	12.8	31
2	Beyond a Linker: The Role of Photochemistry of Crosslinkers in the Direct Optical Patterning of Colloidal Nanocrystals. Angewandte Chemie - International Edition, 2022, 61, .	13.8	24
3	Beyond a Linker: The Role of Photochemistry of Crosslinkers in the Direct Optical Patterning of Colloidal Nanocrystals. Angewandte Chemie, 2022, 134, .	2.0	1
4	An Optoelectronic thermometer based on microscale infrared-to-visible conversion devices. Light: Science and Applications, 2022, 11, 130.	16.6	22
5	Emerging Optoelectronic Devices Based on Microscale LEDs and Their Use as Implantable Biomedical Applications. Micromachines, 2022, 13, 1069.	2.9	3
6	Transfer-printed, tandem microscale light-emitting diodes for full-color displays. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	33
7	Diamond thin films integrated with flexible substrates and their physical, chemical and biological characteristics. Journal Physics D: Applied Physics, 2021, 54, 384004.	2.8	5
8	Optoelectronic sensing of biophysical and biochemical signals based on photon recycling of a micro-LED. Nano Research, 2021, 14, 3208-3213.	10.4	9
9	Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nature Communications, 2020, 11, 3732.	12.8	172
10	A wireless, implantable optoelectrochemical probe for optogenetic stimulation and dopamine detection. Microsystems and Nanoengineering, 2020, 6, 64.	7.0	57
11	Power- and Spectral-Dependent Photon-Recycling Effects in a Double-Junction Gallium Arsenide Photodiode. ACS Photonics, 2019, 6, 59-65.	6.6	9
12	Wirelessly Operated, Implantable Optoelectronic Probes for Optogenetics in Freely Moving Animals. IEEE Transactions on Electron Devices, 2019, 66, 785-792.	3.0	30
13	Ultrafast and low-power optoelectronic infrared-to-visible upconversion devices. Photonics Research, 2019, 7, 1161.	7.0	9
14	Microâ€LEDs: Heterogeneous Integration of Microscale GaN Lightâ€Emitting Diodes and Their Electrical, Optical, and Thermal Characteristics on Flexible Substrates (Adv. Mater. Technol. 1/2018). Advanced Materials Technologies, 2018, 3, 1870005.	5.8	0
15	Implantable and Biodegradable Poly(<scp>l</scp> â€lactic acid) Fibers for Optical Neural Interfaces. Advanced Optical Materials, 2018, 6, 1700941.	7.3	92
16	Heterogeneous Integration of Microscale GaN Lightâ€Emitting Diodes and Their Electrical, Optical, and Thermal Characteristics on Flexible Substrates. Advanced Materials Technologies, 2018, 3, 1700239.	5.8	38
17	High Performance, Biocompatible Dielectric Thinâ€Film Optical Filters Integrated with Flexible Substrates and Microscale Optoelectronic Devices. Advanced Optical Materials, 2018, 6, 1800146.	7.3	25
	Thin-Film Ontical Filters: High Performance, Biocompatible Dielectric Thin-Film Ontical Filters		

Thin-Film Optical Filters: High Performance, Biocompatible Dielectric Thin-Film Optical Filters Integrated with Flexible Substrates and Microscale Optoelectronic Devices (Advanced Optical) Tj ETQq0 0 0 rgBT / Oxerlock 10 Tf 50 57

	He	e Ding		
#	Article		IF	CITATIONS
19	Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 6632-6637.	5,	7.1	81