Yong-gang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2818290/publications.pdf

Version: 2024-02-01

430442 433756 1,041 41 18 31 citations h-index g-index papers 42 42 42 1170 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Concentration Dependence of the Interfacial Tension for Aqueous Two-Phase Polymer Solutions of Dextran and Polyethylene Glycol. Langmuir, 2012, 28, 3831-3839.	1.6	118
2	Concentration dependence of the longest relaxation times of dilute and semi-dilute polymer solutions. Journal of Rheology, 2009, 53, 1069-1085.	1.3	107
3	Structure and microporous formation of cellulose/silk fibroin blend membranes. Journal of Membrane Science, 2000, 177, 153-161.	4.1	80
4	Patterns of Flexible Nanotubes Formed by Liquid-Ordered and Liquid-Disordered Membranes. ACS Nano, 2016, 10, 463-474.	7. 3	79
5	Determination of molecular weight and molecular sizes of polymers by high temperature gel permeation chromatography with a static and dynamic laser light scattering detector. Polymer, 2003, 44, 7209-7220.	1.8	52
6	Coilâ^'Stretch Transition of High Molar Mass Polymers in Packed-Column Hydrodynamic Chromatography. Macromolecules, 2005, 38, 7476-7484.	2.2	48
7	Structure and microporous formation of cellulose/silk fibroin blend membranes. Journal of Membrane Science, 2002, 210, 379-387.	4.1	40
8	Injectable and antibacterial Îμ-poly(l-lysine)-modified poly(vinyl alcohol)/chitosan/AgNPs hydrogels as wound healing dressings. Polymer, 2021, 212, 123155.	1.8	36
9	Fabrication and features of a Methylene Green-mediating sensor for hydrogen peroxide based on regenerated silk fibroin as immobilization matrix for peroxidase. Talanta, 1996, 43, 111-118.	2.9	30
10	PVA/Poly(hexamethylene guanidine)/Gallic Acid Composite Hydrogel Films and Their Antibacterial Performance. ACS Applied Polymer Materials, 2021, 3, 3867-3877.	2.0	29
11	Investigation of molecular masses and aggregation of \hat{l}^2 -d-glucan from Poria cocos sclerotium by size-exclusion chromatography. Journal of Chromatography A, 1999, 839, 49-55.	1.8	27
12	Onset of the Chromatographic Mode Transition from Hydrodynamic Chromatography to Slalom Chromatography:Â An Effect of Polymer Stretching. Macromolecules, 2006, 39, 2004-2006.	2.2	26
13	Stretching of polymer in a random flow: Effect of a shear rate. Europhysics Letters, 2010, 90, 44005.	0.7	26
14	Effect of cytochrome c on the phase behavior of charged multicomponent lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2036-2045.	1.4	26
15	Molecular sensor of elastic stress in a random flow. Europhysics Letters, 2010, 90, 44002.	0.7	24
16	Viscoelasticity of Poly(ethylene glycol) Solutions on Supported Lipid Bilayers via Quartz Crystal Microbalance with Dissipation. Macromolecules, 2015, 48, 1824-1831.	2.2	24
17	Longest Relaxation Times of Double-Stranded and Single-Stranded DNA. Macromolecules, 2007, 40, 2172-2176.	2.2	22

Molar mass fractionation in aqueous two-phase polymer solutions of dextran and poly(ethylene) Tj ETQq0 0 0 rgBT $_{1.8}^{1/2}$ Verlock $_{22}^{1/2}$ 0 Tf 50 6

#	Article	IF	CITATIONS
19	The role of electrostatic repulsion in the gelation of poly(vinyl alcohol)/borax aqueous solutions. Soft Matter, 2018, 14, 6767-6773.	1.2	19
20	Characterization of the Microstructure of Biaxially Oriented Polypropylene Using Preparative Temperature-Rising Elution Fractionation. International Journal of Polymer Analysis and Characterization, 2003, 8, 225-243.	0.9	18
21	Single Polymer Dynamics in A Random Flow. Macromolecular Symposia, 2014, 337, 34-43.	0.4	18
22	Giant Vesicles Encapsulating Aqueous Two-Phase Systems: From Phase Diagrams to Membrane Shape Transformations. Frontiers in Chemistry, 2019, 7, 213.	1.8	18
23	Strategy to improve the characterization of chitosan by size exclusion chromatography coupled with multi angle laser light scattering. Carbohydrate Polymers, 2018, 202, 99-105.	5.1	17
24	Studies on the intermolecular structural heterogeneity of a propylene-ethylene random copolymer using preparative temperature rising elution fractionation. Journal of Applied Polymer Science, 2005, 97, 232-239.	1.3	15
25	Different molecular sizes and chain conformations of water-soluble yeast \hat{l}^2 -glucan fractions and their interactions with receptor Dectin-1. Carbohydrate Polymers, 2021, 273, 118568.	5.1	14
26	Investigation of the effect of branched structure on the performances of the copolymers synthesized from ethylene and \hat{l}_{\pm} -olefin with rac-Et(Ind)2ZrCl2/MMAO catalyst system. Polymer, 2006, 47, 1465-1472.	1.8	12
27	Linear viscoelasticity of poly(acrylic acid) complexed with ferric ion. Rheologica Acta, 2019, 58, 513-523.	1.1	12
28	Adsorption of poly(vinyl alcohol) on gel permeation chromatography columns depends on the degree of hydrolysis. Journal of Chromatography A, 2019, 1585, 138-143.	1.8	12
29	Conformation and persistence length of chitosan in aqueous solutions of different ionic strengths via asymmetric flow field-flow fractionation. Carbohydrate Polymers, 2021, 271, 118402.	5.1	11
30	Studies of Instrumental Spreading in Gel Permeation Chromatography by Coupling with a Twoâ€Angle Laser Light Scattering Detector. Journal of Liquid Chromatography and Related Technologies, 2004, 27, 611-627.	0.5	10
31	Viscoelasticity of poly(ethylene glycol) in aqueous solutions of potassium sulfate: a comparison of quartz crystal microbalance with conventional methods. Polymer Journal, 2019, 51, 471-480.	1.3	8
32	Chemical composition separation of a propylene–ethylene random copolymer by high temperature solvent gradient interaction chromatography. Journal of Chromatography A, 2017, 1522, 23-29.	1.8	7
33	Chromatographic mode transition from size exclusion to slalom chromatography as observed for chitosan. Carbohydrate Polymers, 2020, 235, 115950.	5.1	7
34	Fabrication of polymersomes with controllable morphologies through dewetting w/o/w double emulsion droplets. Chinese Journal of Polymer Science (English Edition), 2016, 34, 475-482.	2.0	6
35	Thermorheological complexity of poly(vinyl alcohol)/borax aqueous solutions. Journal of Rheology, 2020, 64, 991-1002.	1.3	6
36	Speedy quantitative microstructure determination of Poly(ethylene-co-1-hexene) at triads by 1H–13C two-dimensional NMR. Polymer, 2021, 229, 123993.	1.8	4

3

Yong-gang Liu

#	Article	lF	CITATIONS
37	Conformation of dilute poly(vinyl alcohol)-borax complex by asymmetric flow field-flow fractionation. Journal of Chromatography A, 2020, 1624, 461260.	1.8	3
38	Spontaneous Tubulation in Giant Vesicles Induced by GM1 or PEG Adsorption. Biophysical Journal, 2016, 110, 244a.	0.2	2
39	Structure and phase behavior of poly(acrylic acid)–ferric ion complex aqueous solutions. Soft Matter, 2020, 16, 10750-10758.	1.2	2
40	Synthesis and structural characterization of <i>N</i> , <i< td=""><td>1.3</td><td>2</td></i<>	1.3	2
41	Entropic characterization of the coil-stretch transition of polymers in random flows. Physical Review E, 2021, 103, 033107.	0.8	1