Mohammad Zarenia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2818219/publications.pdf

Version: 2024-02-01

		394421	361022
57	1,282 citations	19	35
papers	citations	h-index	g-index
FO	EO	FO	1107
58	58	58	1187
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Dirac Fermion Cloning, Moiré Flat Bands, and Magic Lattice Constants in Epitaxial Monolayer Graphene. Advanced Materials, 2022, 34, e2200625.	21.0	9
2	Dynamic tracking of scaphoid, lunate, and capitate carpal bones using four-dimensional MRI. PLoS ONE, 2022, 17, e0269336.	2.5	3
3	Charge transport in magnetic topological ultra-thin films: the effect of structural inversion asymmetry. Journal of Physics Condensed Matter, 2021, 33, 325702.	1.8	1
4	Circular quantum dots in twisted bilayer graphene. Physical Review B, 2020, 101, .	3.2	19
5	Enhanced hydrodynamic transport in near magic angle twisted bilayer graphene. Physical Review B, 2020, 101, .	3.2	10
6	Reply to "Comment on â€~Excitons, trions, and biexcitons in transition-metal dichalcogenides: Magnetic-field dependence'Â― Physical Review B, 2020, 101, .	3.2	0
7	Two distinctive regimes in the charge transport of a magnetic topological ultra thin film. New Journal of Physics, 2020, 22, 123004.	2.9	2
8	Thermal transport in compensated semimetals: Effect of electron-electron scattering on Lorenz ratio. Physical Review B, 2020, 102, .	3.2	11
9	Temperature collapse of the electric conductivity in bilayer graphene. Physical Review Research, 2020, 2, .	3.6	2
10	Disorder-enabled hydrodynamics of charge and heat transport in monolayer graphene. 2D Materials, 2019, 6, 035024.	4.4	20
11	Breakdown of the Wiedemann-Franz law in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>A</mml:mi><mml:mi>B</mml:mi>-stacked bilayer graphene. Physical Review B, 2019, 99, .</mml:mrow></mml:math>	> < /8:12 nl:mr	owle
12	Coulomb drag in strongly coupled quantum wells: Temperature dependence of the many-body correlations. Applied Physics Letters, $2019,115,.$	3.3	2
13	Strong valley Zeeman effect of dark excitons in monolayer transition metal dichalcogenides in a tilted magnetic field. Physical Review B, 2018, 97, .	3.2	22
14	High-temperature electron-hole superfluidity with strong anisotropic gaps in double phosphorene monolayers. Physical Review B, 2018, 97, .	3.2	21
15	Anisotropic charge density wave in electron-hole double monolayers: Applied to phosphorene. Physical Review B, 2018, 98, .	3.2	0
16	Magnetic field dependence of atomic collapse in bilayer graphene. Physical Review B, 2018, 98, .	3.2	2
17	Comment on "lmpurity spectra of graphene under electric and magnetic fields― Physical Review B, 2018, 97, .	3.2	5
18	Edge states in gated bilayer-monolayer graphene ribbons and bilayer domain walls. Journal of Applied Physics, 2018, 123, 204301.	2.5	4

#	Article	IF	CITATIONS
19	Multiband Mechanism for the Sign Reversal of Coulomb Drag Observed in Double Bilayer Graphene Heterostructures. Physical Review Letters, 2018, 121, 036601.	7.8	8
20	Excitons, trions, and biexcitons in transition-metal dichalcogenides: Magnetic-field dependence. Physical Review B, 2018, 97, .	3.2	45
21	Exciton states in a circular graphene quantum dot: Magnetic field induced intravalley to intervalley transition. Physical Review B, 2017, 95, .	3.2	9
22	Transmission in graphene–topological insulator heterostructures. Physical Review B, 2017, 95, .	3.2	5
23	Wigner crystallization in transition metal dichalcogenides: A new approach to correlation energy. Physical Review B, 2017, 95, .	3.2	22
24	Inhomogeneous phases in coupled electron-hole bilayer graphene sheets: Charge Density Waves and Coupled Wigner Crystals. Scientific Reports, 2017, 7, 11510.	3.3	13
25	Magnetic properties of bilayer graphene quantum dots in the presence of uniaxial strain. Physical Review B, 2017, 96, .	3.2	14
26	Landau levels in biased graphene structures with monolayer-bilayer interfaces. Physical Review B, 2017, 96, .	3.2	9
27	Excitons and trions in monolayer transition metal dichalcogenides: A comparative study between the multiband model and the quadratic single-band model. Physical Review B, 2017, 96, .	3.2	61
28	Electrostatically confined trilayer graphene quantum dots. Physical Review B, 2017, 95, .	3.2	7
29	Graphene quantum dot with a Coulomb impurity: Subcritical and supercritical regime. Physical Review B, 2017, 95, .	3.2	14
30	Quantum transport across van der Waals domain walls in bilayer graphene. Journal of Physics Condensed Matter, 2017, 29, 425303.	1.8	12
31	Many-body electron correlations in graphene. Journal of Physics: Conference Series, 2016, 702, 012008.	0.4	4
32	Correlation and current anomalies in helical quantum dots. Physical Review B, 2016, 94, .	3.2	4
33	Strain-induced topological phase transition in phosphorene and in phosphorene nanoribbons. Physical Review B, 2016, 94, .	3.2	90
34	Magnetic field dependence of energy levels in biased bilayer graphene quantum dots. Physical Review B, 2016, 93, .	3.2	22
35	Energy levels of hybrid monolayer-bilayer graphene quantum dots. Physical Review B, 2016, 93, .	3.2	30
36	Hexagonal-shaped monolayer-bilayer quantum disks in graphene: A tight-binding approach. Physical Review B, 2016, 94, .	3.2	10

#	Article	IF	Citations
37	Large gap electron-hole superfluidity and shape resonances in coupled graphene nanoribbons. Scientific Reports, 2016, 6, 24860.	3.3	8
38	Energy levels of ABC-stacked trilayer graphene quantum dots with infinite-mass boundary conditions. Physical Review B, 2016, 94, .	3.2	9
39	Gate tunable layer selectivity of transport in bilayer graphene nanostructures. Europhysics Letters, 2016, 113, 17006.	2.0	17
40	Energy levels of bilayer graphene quantum dots. Physical Review B, 2015, 92, .	3.2	24
41	Wave fronts and packets in 1D models of different meta-materials: Graphene, left-handed media and transmission line. Physica Status Solidi (B): Basic Research, 2015, 252, 2330-2338.	1.5	1
42	Analytical study of the energy levels in bilayer graphene quantum dots. Carbon, 2014, 78, 392-400.	10.3	36
43	Geometry and edge effects on the energy levels of graphene quantum rings: A comparison between tight-binding and simplified Dirac models. Physical Review B, 2014, 89, .	3.2	58
44	Enhancement of electron-hole superfluidity in double few-layer graphene. Scientific Reports, 2014, 4, 7319.	3.3	42
45	Electron-electron interactions in bilayer graphene quantum dots. Physical Review B, 2013, 88, .	3.2	32
46	Snake states in graphene quantum dots in the presence of a <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> - <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/Math/ML"><td>3.2</td><td>17</td></mml:math>	3.2	17
47	display="inline"> <mml:mi>n</mml:mi> junction. Physical Review B, 2013, 87, . Landau-level dispersion and the quantum Hall plateaus in bilayer graphene., 2013, , .		0
48	Substrate-induced chiral states in graphene. Physical Review B, 2012, 86, .	3.2	41
49	Interband optical absorption in a circular graphene quantum dot. Physica Scripta, 2012, T149, 014056.	2.5	6
50	Magnetotransport in periodically modulated bilayer graphene. Physical Review B, 2012, 85, .	3.2	19
51	Energy levels of triangular and hexagonal graphene quantum dots: A comparative study between the tight-binding and Dirac equation approach. Physical Review B, 2011, 84, .	3.2	148
52	Chiral states in bilayer graphene: Magnetic field dependence and gap opening. Physical Review B, 2011, 84, .	3.2	53
53	Electronic and optical properties of a circular graphene quantum dot in a magnetic field: Influence of the boundary conditions. Physical Review B, 2011, 84, .	3.2	84
54	Topological confinement in an antisymmetric potential in bilayer graphene in the presence of a magnetic field. Nanoscale Research Letters, 2011, 6, 452.	5.7	5

#	Article	IF	CITATIONS
55	OPTIMIZATION OF QUANTUM MONTE CARLO WAVE FUNCTION: STEEPEST DESCENT METHOD. International Journal of Modern Physics C, 2010, 21, 523-533.	1.7	8
56	Simplified model for the energy levels of quantum rings in single layer and bilayer graphene. Physical Review B, 2010, 81, .	3.2	75
57	Electrostatically Confined Quantum Rings in Bilayer Graphene. Nano Letters, 2009, 9, 4088-4092.	9.1	51