Han Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2817457/publications.pdf Version: 2024-02-01

ΗΔΝΙ \λ/ΕΙ

#	Article	IF	CITATIONS
1	Supported NiW catalysts with tunable size and morphology of active phases for highly selective hydrodesulfurization of fluid catalytic cracking naphtha. Journal of Catalysis, 2015, 330, 288-301.	6.2	93
2	Preparation of supported hydrodesulfurization catalysts with enhanced performance using Mo-based inorganic–organic hybrid nanocrystals as a superior precursor. Journal of Materials Chemistry, 2012, 22, 25340.	6.7	87
3	Effects of the support BrĄ̃nsted acidity on the hydrodesulfurization and hydrodenitrogention activity of sulfided NiMo/Al 2 O 3 catalysts. Catalysis Today, 2017, 292, 58-66.	4.4	63
4	Preparation of F-doped MoS2/Al2O3 catalysts as a way to understand the electronic effects of the support BrÃ,nsted acidity on HDN activity. Journal of Catalysis, 2016, 339, 135-142.	6.2	61
5	Preparation of hydrodesulfurization catalysts using MoS3 nanoparticles as a precursor. Applied Catalysis B: Environmental, 2018, 224, 330-340.	20.2	55
6	Effects of Ni–Al2O3 interaction on NiMo/Al2O3 hydrodesulfurization catalysts. Journal of Catalysis, 2020, 387, 62-72.	6.2	44
7	Redispersion effects of citric acid on CoMo/Î ³ -Al2O3 hydrodesulfurization catalysts. Catalysis Communications, 2016, 82, 20-23.	3.3	41
8	A study on the role of Ni atoms in the HDN activity of NiMoS2/Al2O3 catalyst. Applied Catalysis A: General, 2020, 593, 117458.	4.3	19
9	Coke and radicals formation on a sulfided NiMo/ \hat{I}^3 -Al 2 O 3 catalyst during hydroprocessing of an atmospheric residue in hydrogen donor media. Fuel Processing Technology, 2017, 159, 404-411.	7.2	18
10	Promoting effects of SO ₄ ^{2â^'} on a NiMo/γ-Al ₂ O ₃ hydrodesulfurization catalyst. Catalysis Science and Technology, 2020, 10, 5218-5230.	4.1	18
11	Radicals and coking behaviors during thermal cracking of two vacuum resids and their SARA fractions. Fuel, 2020, 279, 118374.	6.4	17
12	A study on the origin of the active sites of HDN catalysts using alumina-supported MoS ₃ nanoparticles as a precursor. Catalysis Science and Technology, 2016, 6, 3497-3509.	4.1	16
13	Sulfided Mo/Al2O3 hydrodesulfurization catalyst prepared by ethanol-assisted chemical deposition method. Chinese Journal of Catalysis, 2013, 34, 659-666.	14.0	15
14	Behavior of coking and stable radicals formation during thermal reaction of an atmospheric residue. Fuel Processing Technology, 2019, 192, 87-95.	7.2	14
15	An Insight into the Evolution of Sulfur Species during the Integration Process of Residue Hydrotreating and Delayed Coking. Industrial & Engineering Chemistry Research, 2020, 59, 12719-12728.	3.7	10
16	Towards a deep understanding of the evolution and molecular structures of refractory sulfur compounds during deep residue hydrotreating process. Fuel Processing Technology, 2022, 231, 107235.	7.2	8
17	Unraveling the molecular-level structures and distribution of refractory sulfur compounds during residue hydrotreating process. Fuel Processing Technology, 2021, 224, 107025.	7.2	6
18	Coke Removal from a Deactivated Industrial Diesel Hydrogenation Catalyst by Tetralin at 300–400 °C. Energy & Fuels, 2019, 33, 2437-2444.	5.1	5

#	Article	IF	CITATIONS
19	Preparation of sulfided hydrodesulfurization catalysts usingsynthesized MoS42- solution as precursor. , 2022, , .		0