Johan Zetterberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2817309/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Infrared surface spectroscopy and surface optical reflectance for operando catalyst surface characterization. Applied Surface Science, 2022, 578, 152048.	6.1	4
2	Visualizing the Gas Diffusion Induced Ignition of a Catalytic Reaction. ACS Catalysis, 2022, 12, 6589-6595.	11.2	6
3	In Situ H2 Reduction of Al2O3-Supported Ni- and Mo-Based Catalysts. Catalysts, 2022, 12, 755.	3.5	7
4	Near-Surface Imaging of the Multicomponent Gas Phase above a Silver Catalyst during Partial Oxidation of Methanol. ACS Catalysis, 2021, 11, 155-168.	11.2	16
5	<i>Operando</i> Reflectance Microscopy on Polycrystalline Surfaces in Thermal Catalysis, Electrocatalysis, and Corrosion. ACS Applied Materials & Interfaces, 2021, 13, 19530-19540.	8.0	14
6	Revisiting Optical Reflectance from Au(111) Electrode Surfaces with Combined High-Energy Surface X-ray Diffraction. Journal of the Electrochemical Society, 2021, 168, 096511.	2.9	9
7	Reduced Carbon Monoxide Saturation Coverage on Vicinal Palladium Surfaces: the Importance of the Adsorption Site. Journal of Physical Chemistry Letters, 2021, 12, 9508-9515.	4.6	3
8	Combining PM-IRRAS with optical imaging techniques for operando studies of CO oxidation. , 2021, , .		0
9	Catalytic Oxidation of CO on a Curved Pt(111) Surface: Simultaneous Ignition at All Facets through a Transient COâ€O Complex**. Angewandte Chemie - International Edition, 2020, 59, 20037-20043.	13.8	13
10	Catalytic Oxidation of CO on a Curved Pt(111) Surface: Simultaneous Ignition at All Facets through a Transient COâ€O Complex**. Angewandte Chemie, 2020, 132, 20212-20218.	2.0	1
11	Thermal Stability of Single-Crystalline IrO ₂ (110) Layers: Spectroscopic and Adsorption Studies. Journal of Physical Chemistry C, 2020, 124, 15324-15336.	3.1	22
12	An electrochemical cell for 2-dimensional surface optical reflectance during anodization and cyclic voltammetry. Review of Scientific Instruments, 2020, 91, 044101.	1.3	17
13	Surface optical reflectance combined with x-ray techniques during gas-surface interactions. Journal Physics D: Applied Physics, 2020, 53, 224001.	2.8	15
14	Temperature characterization of an operando flow reactor for heterogeneous catalysis. Journal Physics D: Applied Physics, 2019, 52, 324003.	2.8	10
15	Combining Planar Laser-Induced Fluorescence with Stagnation Point Flows for Small Single-Crystal Model Catalysts: CO Oxidation on a Pd(100). Catalysts, 2019, 9, 484.	3.5	5
16	Combining high-energy X-ray diffraction with Surface Optical Reflectance and Planar Laser Induced Fluorescence for <i> operando </i> catalyst surface characterization. Review of Scientific Instruments, 2019, 90, 033703.	1.3	20
17	Combining synchrotron light with laser technology in catalysis research. Journal of Synchrotron Radiation, 2018, 25, 1389-1394.	2.4	9
18	Planar Laser Induced Fluorescence Applied to Catalysis. Springer Series in Chemical Physics, 2017, , 131-149	0.2	4

JOHAN ZETTERBERG

#	Article	IF	CITATIONS
19	Simultaneous Imaging of Gas Phase over and Surface Reflectance of a Pd(100) Single Crystal during CO Oxidation. Journal of Physical Chemistry C, 2017, 121, 23511-23519.	3.1	20
20	Novel in Situ Techniques for Studies of Model Catalysts. Accounts of Chemical Research, 2017, 50, 2326-2333.	15.6	39
21	A convenient setup for laser-induced fluorescence imaging of both CO and CO2 during catalytic CO oxidation. Applied Physics B: Lasers and Optics, 2017, 123, 1.	2.2	19
22	Strain Dependent Light-off Temperature in Catalysis Revealed by Planar Laser-Induced Fluorescence. ACS Catalysis, 2017, 7, 110-114.	11.2	36
23	Infrared Spectroscopy as Molecular Probe of the Macroscopic Metal-Liquid Interface. Applied Sciences (Switzerland), 2017, 7, 1229.	2.5	1
24	Visualization of Gas Distribution in a Model AP-XPS Reactor by PLIF: CO Oxidation over a Pd(100) Catalyst. Catalysts, 2017, 7, 29.	3.5	23
25	Comparison of AP-XPS and PLIF Measurements During CO Oxidation Over Pd Single Crystals. Topics in Catalysis, 2016, 59, 478-486.	2.8	21
26	2D and 3D imaging of the gas phase close to an operating model catalyst by planar laser induced fluorescence. Journal of Physics Condensed Matter, 2016, 28, 453002.	1.8	30
27	Laser Diagnostics for the Study of Heterogeneous Catalysis. , 2016, , .		0
28	Single-shot, planar infrared imaging in flames using polarization spectroscopy. Optics Express, 2015, 23, 30414.	3.4	4
29	Real-Time Gas-Phase Imaging over a Pd(110) Catalyst during CO Oxidation by Means of Planar Laser-Induced Fluorescence. ACS Catalysis, 2015, 5, 2028-2034.	11.2	26
30	Evidence for the Active Phase of Heterogeneous Catalysts through In Situ Reaction Product Imaging and Multiscale Modeling. ACS Catalysis, 2015, 5, 4514-4518.	11.2	41
31	Spatially and temporally resolved gas distributions around heterogeneous catalysts using infrared planar laser-induced fluorescence. Nature Communications, 2015, 6, 7076.	12.8	41
32	Non-intrusive detection of methanol in gas phase using infrared degenerate four-wave mixing. Applied Physics B: Lasers and Optics, 2015, 121, 123-130.	2.2	3
33	Strategy for PLIF single-shot HCO imaging in turbulent methane/air flames. Combustion and Flame, 2014, 161, 1566-1574.	5.2	37
34	Laser-Induced Fluorescence Detection of Hot Molecular Oxygen in Flames Using an Alexandrite Laser. Applied Spectroscopy, 2014, 68, 1266-1273.	2.2	2
35	Directly measuring reaction kinetics of ˙QOOH – a crucial but elusive intermediate in hydrocarbon autoignition. Physical Chemistry Chemical Physics, 2013, 15, 10753	2.8	58
36	Anin situset up for the detection of CO2from catalytic CO oxidation by using planar laser-induced fluorescence. Review of Scientific Instruments, 2012, 83, 053104.	1.3	35

JOHAN ZETTERBERG

#	Article	IF	CITATIONS
37	Vibrational relaxation of CO2 (1201) by argon. Chemical Physics, 2009, 359, 71-76.	1.9	3
38	Investigation of local flame structures and statistics in partially premixed turbulent jet flames using simultaneous single-shot CH and OH planar laser-induced fluorescence imaging. Combustion and Flame, 2008, 154, 802-818.	5.2	78
39	Two-Dimensional Temperature Measurements in Flames Using Filtered Rayleigh Scattering at 254 nm. Applied Spectroscopy, 2008, 62, 778-783.	2.2	26
40	Midinfrared polarization spectroscopy of OH and hot water in low pressure lean premixed flames. Journal of Chemical Physics, 2007, 127, 084310.	3.0	30
41	Single-shot imaging of ground-state hydrogen atoms with a nonlinear laser spectroscopic technique. Optics Letters, 2007, 32, 1569.	3.3	10
42	Simultaneous PIV/OH-PLIF, Rayleigh thermometry/OH-PLIF and stereo PIV measurements in a low-swirl flame. Applied Optics, 2007, 46, 3928.	2.1	92
43	Measurements of Collisional Broadening Coefficients by Infrared Polarization Spectroscopy. Applied Spectroscopy, 2007, 61, 424-427.	2.2	4
44	Simultaneous laser-induced fluorescence and sub-Doppler polarization spectroscopy of the CH radical. Optics Communications, 2007, 270, 347-352.	2.1	28
45	Development of improved PLIF CH detection using an Alexandrite laser for single-shot investigation of turbulent and lean flames. Proceedings of the Combustion Institute, 2007, 31, 727-735.	3.9	55
46	Mid-infrared polarization spectroscopy of C2H2: Non-intrusive spatial-resolved measurements of polyatomic hydrocarbon molecules for combustion diagnostics. Proceedings of the Combustion Institute, 2007, 31, 817-824.	3.9	30
47	High resolution polarization spectroscopy and laser induced fluorescence of CO2 around 2μm. European Physical Journal D, 2007, 42, 41-47.	1.3	20
48	Large eddy simulation and experiments of stratified lean premixed methane/air turbulent flames. Proceedings of the Combustion Institute, 2007, 31, 1467-1475.	3.9	61
49	Determination of surface normal temperature gradients using thermographic phosphors and filtered Rayleigh scattering. Applied Physics B: Lasers and Optics, 2006, 84, 537-541.	2.2	44
50	Mid-infrared PS and LIF detection of CH4 and C2H6 in cold flows and flames at atmospheric pressure. Proceedings of the Combustion Institute, 2005, 30, 1629-1636.	3.9	28
51	Mid-infrared polarization spectroscopy of polyatomic molecules: Detection of nascent CO2 and H2O in atmospheric pressure flames. Chemical Physics Letters, 2005, 407, 243-248.	2.6	37
52	Applications of a single-longitudinal-mode alexandrite laser for diagnostics of parameters of combustion interest. Review of Scientific Instruments, 2004, 75, 3208-3215.	1.3	30
53	Detection of methane with mid-infrared polarization spectroscopy. Applied Physics B: Lasers and Optics, 2004, 79, 135-138.	2.2	33
54	Infrared polarization spectroscopy of CO2 at atmospheric pressure. Optics Communications, 2004, 233, 373-381.	2.1	25