List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2816949/publications.pdf Version: 2024-02-01

DEZA SADD

#	Article	IF	CITATIONS
1	An experimental study of electro-osmotic flow in rectangular microchannels. Journal of Fluid Mechanics, 2004, 506, 357-367.	1.4	158
2	Three-dimensional porous carbon nanotube sponges for high-performance anodes of microbial fuel cells. Journal of Power Sources, 2015, 298, 177-183.	4.0	88
3	Rheology of mineral oil-SiO2 nanofluids at high pressure and high temperatures. International Journal of Thermal Sciences, 2014, 77, 108-115.	2.6	76
4	Experimental study of forced convective heat transfer of nanofluids in a microchannel. International Communications in Heat and Mass Transfer, 2012, 39, 1325-1330.	2.9	74
5	Experimental investigation of buoyancy effects on convection heat transfer of supercritical CO2 flow in a horizontal tube. Heat and Mass Transfer, 2016, 52, 713-726.	1.2	72
6	Thermal evaluation of nanofluids in heat exchangers. International Communications in Heat and Mass Transfer, 2013, 49, 5-9.	2.9	70
7	Multilayer nano-particle image velocimetry. Experiments in Fluids, 2006, 41, 185-194.	1.1	62
8	Experimental investigation of spray characteristics of alternative aviation fuels. Energy Conversion and Management, 2014, 88, 1060-1069.	4.4	60
9	An experimental investigation of the near-field flow development in coaxial jets. Physics of Fluids, 2003, 15, 1233-1246.	1.6	48
10	Diffusion-induced bias in near-wall velocimetry. Journal of Fluid Mechanics, 2007, 577, 443-456.	1.4	46
11	Impact of hindered Brownian diffusion on the accuracy of particle-image velocimetry using evanescent-wave illumination. Experiments in Fluids, 2005, 38, 90-98.	1.1	45
12	The effects of alumina nanoparticles as fuel additives on the spray characteristics of gas-to-liquid jet fuels. Experimental Thermal and Fluid Science, 2017, 87, 93-103.	1.5	39
13	Heat transfer characteristics of double, triple and hexagonally-arranged droplet train impingement arrays. International Journal of Heat and Mass Transfer, 2017, 110, 562-575.	2.5	37
14	Theoretical Prediction of Laminar Burning Speed and Ignition Delay Time of Gas-to-Liquid Fuel. Journal of Energy Resources Technology, Transactions of the ASME, 2017, 139, .	1.4	32
15	Numerical and experimental investigations of crown propagation dynamics induced by droplet train impingement. International Journal of Heat and Fluid Flow, 2016, 57, 24-33.	1.1	31
16	Effect of Nanoparticles on the Fuel Properties and Spray Performance of Aviation Turbine Fuel. Journal of Energy Resources Technology, Transactions of the ASME, 2017, 139, .	1.4	28
17	Rheology of a colloidal suspension of carbon nanotube particles in a water-based drilling fluid. Powder Technology, 2019, 342, 585-593.	2.1	28
18	Velocity measurements inside the diffuse electric double layer in electro-osmotic flow. Applied Physics Letters, 2006, 89, 044103.	1.5	26

#	Article	IF	CITATIONS
19	In-cylinder engine flow measurement using stereoscopic molecular tagging velocimetry (SMTV). Experiments in Fluids, 2009, 46, 277-284.	1.1	26
20	Recent warming trend in the coastal region of Qatar. Theoretical and Applied Climatology, 2017, 128, 193-205.	1.3	25
21	Effect of Carbon Dioxide on the Laminar Burning Speed of Propane–Air Mixtures. Journal of Energy Resources Technology, Transactions of the ASME, 2019, 141, .	1.4	23
22	Performance maximization by temperature glide matching in energy exchangers of cooling systems operating with natural hydrocarbon/CO2 refrigerants. International Journal of Refrigeration, 2020, 119, 294-304.	1.8	23
23	EFFECT OF FUEL PROPERTIES ON SPRAY CHARACTERISTICS OF ALTERNATIVE JET FUELS USING GLOBAL SIZING VELOCIMETRY. Atomization and Sprays, 2014, 24, 575-597.	0.3	22
24	Effects of High Frequency Droplet Train Impingement on Crown Propagation Dynamics and Heat Transfer. Journal of Heat Transfer, 2016, 138, .	1.2	19
25	Prediction of Microdroplet Breakup Regime in Asymmetric T-Junction Microchannels. Biomedical Microdevices, 2018, 20, 72.	1.4	19
26	Macroscopic spray performance of alternative and conventional jet fuels at non-reacting, elevated ambient conditions. Fuel, 2020, 266, 117023.	3.4	19
27	Characteristics of surface layer turbulence in coastal area of Qatar. Environmental Fluid Mechanics, 2012, 12, 515-531.	0.7	18
28	A spline-based technique for estimating flow velocities using two-camera multi-line MTV. Experiments in Fluids, 2003, 35, 257-261.	1.1	16
29	Investigation of GTL-Like Jet Fuel Composition on GT Engine Altitude Ignition and Combustion Performance: Part Ilâ \in "Detailed Diagnostics. , 2011, , .		16
30	nPIV velocity measurement of nanofluids in the near-wall region of a microchannel. Nanoscale Research Letters, 2012, 7, 284.	3.1	15
31	High-pressure rheology of alumina-silicone oil nanofluids. Powder Technology, 2016, 301, 1025-1031.	2.1	15
32	Surface shear stress measurement system for boundary layer flow over a salt playa. Measurement Science and Technology, 2000, 11, 1403-1413.	1.4	14
33	Dynamic Flow Characteristics and Design Principles of Laminar Flow Microbial Fuel Cells. Micromachines, 2018, 9, 479.	1.4	14
34	Thermodynamic Study on Blends of Hydrocarbons and Carbon Dioxide as Zeotropic Refrigerants. Journal of Energy Resources Technology, Transactions of the ASME, 2020, 142, .	1.4	14
35	Flow field characteristics in the near field region of particle-laden coaxial jets. Experiments in Fluids, 2005, 39, 885-894.	1.1	13
36	Effect of GTL-Like Jet Fuel Composition on GT Engine Altitude Ignition Performance: Part l—Combustor Operability. , 2011, , .		13

#	Article	IF	CITATIONS
37	Near-wall velocity profile measurement for nanofluids. AIP Advances, 2016, 6, 015308.	0.6	12
38	Bifunctional nano-sponges serving as non-precious metal catalysts and self-standing cathodes for high performance fuel cell applications. Nano Energy, 2016, 22, 607-614.	8.2	10
39	Effects of High Frequency Droplet Train Impingement on Spreading-Splashing Transition, Film Hydrodynamics and Heat Transfer. Journal of Heat Transfer, 2016, 138, .	1.2	10
40	Effects of nanoscale fuel additives on properties and non-reacting spray performance of alternative, conventional and blended jet fuels at elevated ambient conditions. Fuel Processing Technology, 2020, 208, 106436.	3.7	10
41	Hydrodynamic and heat transfer characteristics of droplet train spreading-splashing transition on heated surface. International Journal of Heat and Mass Transfer, 2021, 164, 120500.	2.5	10
42	In situ calibration of four-wire hot-wire probes for atmospheric measurement. Experimental Thermal and Fluid Science, 2013, 44, 82-89.	1.5	9
43	Optimal hydrocarbon based working fluid selection for a simple supercritical Organic Rankine Cycle. Energy Conversion and Management, 2021, 243, 114424.	4.4	8
44	Microscopic spray measurements of non-reacting alternative jet fuel: Effect of ambient gas temperature. Fuel, 2021, 294, 120467.	3.4	7
45	Experimental and Numerical Visualization of Droplet-Induced Crown Splashing Dynamics. Journal of Heat Transfer, 2017, 139, .	1.2	6
46	Comparison of Near-Nozzle Spray Performance of Gas-to-Liquid and Jet A-1 Fuels Using Shadowgraph and Phase Doppler Anemometry. Journal of Energy Resources Technology, Transactions of the ASME, 2018, 140, .	1.4	5
47	Design of a Mini Heat Sink Based on Constructal Theory for Electronic Chip Cooling. , 2014, , .		4
48	Induced flow field of randomly moving nanoparticles: a statistical perspective. Microfluidics and Nanofluidics, 2015, 18, 1317-1328.	1.0	4
49	Application of GPU processing for Brownian particle simulation. Computer Physics Communications, 2015, 186, 39-47.	3.0	4
50	Effects of Screen Laminates on Droplet-Induced Film Hydrodynamics and Surface Heat Transfer. Journal of Heat Transfer, 2016, 138, .	1.2	4
51	Near-Wall Velocimetry in the Impingement-Zones of a Microdroplet and a Round Jet Stream. Journal of Fluids Engineering, Transactions of the ASME, 2021, 143, .	0.8	4
52	A multipurpose feed system for fluids and solid particles. Measurement Science and Technology, 2003, 14, N33-N35.	1.4	3
53	Numerical Simulation of Particle-Laden Coaxial Turbulent Jets. International Journal for Computational Methods in Engineering Science and Mechanics, 2013, 14, 61-73.	1.4	3

54 Spray Characteristics of Fischer-Tropsch Alternate Jet Fuels. , 2013, , .

3

#	Article	IF	CITATIONS
55	Experimental and Numerical Visualization of Heat Transfer and Hydrodynamics Induced by Double Droplet Train Impingement. Journal of Heat Transfer, 2018, 140, .	1.2	3
56	Application of Nanoparticles in Clean Fuels. Environmental Chemistry for A Sustainable World, 2019, , 223-242.	0.3	3
57	Experimental Investigation of Heat Transfer Characteristics of Pseudocritical Carbon Dioxide in a Circular Horizontal Tube. , 2012, , .		2
58	Application of Nanofluids in a Shell-and-Tube Heat Exchanger. , 2013, , .		2
59	Experimental and Numerical Characterization of Droplet-Induced Spreading-Splashing Transition in Surface Cooling. , 2016, , .		2
60	Viscosity measurement dataset for a water-based drilling mud–carbon nanotube suspension at high-pressure and high-temperature. Data in Brief, 2019, 24, 103816.	0.5	2
61	HYDRODYNAMICS AND HEAT TRANSFER OF MICRO-SCALE SURFACE FLOWS INDUCED BY TRIANGULATED DROPLET STREAM IMPINGEMENT ARRAY. , 2016, , .		2
62	Turbulence characteristics within the atmospheric surface layer of the coastal region of Qatar. Boundary-Layer Meteorology, 2022, 184, 355-370.	1.2	2
63	Effect of Non Uniform Out-of-Plane Illumination and Shear Rate on the Accuracy of nPIV Velocity Measurements. , 2010, , .		1
64	Heat Transfer Performance of SiO ₂ -Water Nanofluid in a Plate Heat Exchanger. , 2012, , .		1
65	A Numerical Approach in Predicting Flow Field Induced by Randomly Moving Nano Particles. , 2013, , .		1
66	Viscosity Measurements of Nanofluids at Elevated Temperatures and Pressures. , 2013, , .		1
67	Experimental Study of the Effect of Fuel Properties on Spray Performance of Alternative Jet Fuel. , 2014, , .		1
68	Diurnal Wind Pattern and Climate Condition on the Coastal Region of Qatar. Journal of Scientific Research and Reports, 0, , 37-51.	0.2	1
69	Spray Characteristics of Alternative Jet Fuel at Elevated Ambient Conditions. , 2019, , .		1
70	Influence of Nanoparticles on Spray Performance of Alternative Jet Fuels. , 2016, , .		0
71	Rheological studies of a water based drilling mud suspended with carbon nano particles. , 2018, , .		0
72	Spray Performance of Alternative Jet Fuel Based Nanofuels at High-Ambient Conditions. , 2018, , .		0

		Reza Sadr		
#	Article		IF	CITATIONS
73	11 Synthetic Fuel and Renewable Energy. Green Chemistry and Chemical Engineering, 2017, , 37	3-456.	0.0	0
74	A Comprehensive Study of Asymmetric Micro-Droplet Splitting in T-Junction. , 2019, , .			0
75	Study of a Microfluidic System Based One-Step Blood Cell-Free Region for Biomarker Detection. , \cdot	2019, ,		0