List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2816902/publications.pdf Version: 2024-02-01

LIVE OHLED

#	Article	IF	CITATIONS
1	SLM2 Is A Novel Cardiac Splicing Factor Involved in Heart Failure due to Dilated Cardiomyopathy. Genomics, Proteomics and Bioinformatics, 2022, 20, 129-146.	3.0	4
2	Intricacies of single-cell multi-omics data integration. Trends in Genetics, 2022, 38, 128-139.	2.9	25
3	Single-cell-resolved dynamics of chromatin architecture delineate cell and regulatory states in zebrafish embryos. Cell Genomics, 2022, 2, 100083.	3.0	8
4	Deep learning for prediction of population health costs. BMC Medical Informatics and Decision Making, 2022, 22, 32.	1.5	6
5	A single-cell Arabidopsis root atlas reveals developmental trajectories in wild-type and cell identity mutants. Developmental Cell, 2022, 57, 543-560.e9.	3.1	106
6	Simultaneous dimensionality reduction and integration for single-cell ATAC-seq data using deep learning. Nature Machine Intelligence, 2022, 4, 162-168.	8.3	15
7	The BTB transcription factors ZBTB11 and ZFP131 maintain pluripotency by repressing pro-differentiation genes. Cell Reports, 2022, 38, 110524.	2.9	7
8	Multiomic atlas with functional stratification and developmental dynamics of zebrafish cis-regulatory elements. Nature Genetics, 2022, 54, 1037-1050.	9.4	26
9	Standardized annotation of translated open reading frames. Nature Biotechnology, 2022, 40, 994-999.	9.4	86
10	Protein Synthesis in the Developing Neocortex at Near-Atomic Resolution Reveals Ebp1-Mediated Neuronal Proteostasis at the 60S Tunnel Exit. Molecular Cell, 2021, 81, 304-322.e16.	4.5	27
11	Genome-Wide Analysis of Actively Translated Open Reading Frames Using RiboTaper/ORFquant. Methods in Molecular Biology, 2021, 2252, 331-346.	0.4	4
12	Inferring time series chromatin states for promoter-enhancer pairs based on Hi-C data. BMC Genomics, 2021, 22, 84.	1.2	3
13	Spatio-temporal mRNA tracking in the early zebrafish embryo. Nature Communications, 2021, 12, 3358.	5.8	25
14	Ythdf is a N6â€methyladenosine reader that modulates Fmr1 target mRNA selection and restricts axonal growth in <i>Drosophila</i> . EMBO Journal, 2021, 40, e104975.	3.5	56
15	How to find genomic regions relevant for gene regulation. Medizinische Genetik, 2021, 33, 157-165.	0.1	0
16	Towards a deeper annotation of human IncRNAs. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194385.	0.9	12
17	A Conserved Noncoding Locus Regulates Random Monoallelic Xist Expression across a Topological Boundary. Molecular Cell, 2020, 77, 352-367.e8.	4.5	48
18	Deep learning for genomics using Janggu. Nature Communications, 2020, 11, 3488.	5.8	47

#	Article	IF	CITATIONS
19	Lineage-Resolved Enhancer and Promoter Usage during a Time Course of Embryogenesis. Developmental Cell, 2020, 55, 648-664.e9.	3.1	47
20	Integrated proteogenomic deep sequencing and analytics accurately identify non-canonical peptides in tumor immunopeptidomes. Nature Communications, 2020, 11, 1293.	5.8	196
21	Quantification of translation uncovers the functions of the alternative transcriptome. Nature Structural and Molecular Biology, 2020, 27, 717-725.	3.6	35
22	Deep neural networks for interpreting RNA-binding protein target preferences. Genome Research, 2020, 30, 214-226.	2.4	77
23	The Translational Landscape of the Human Heart. Cell, 2019, 178, 242-260.e29.	13.5	407
24	Purification of cross-linked RNA-protein complexes by phenol-toluol extraction. Nature Communications, 2019, 10, 990.	5.8	168
25	Global identification of functional microRNA-mRNA interactions in Drosophila. Nature Communications, 2019, 10, 1626.	5.8	35
26	Reproducible inference of transcription factor footprints in ATAC-seq and DNase-seq datasets using protocol-specific bias modeling. Genome Biology, 2019, 20, 42.	3.8	73
27	Deciphering human ribonucleoprotein regulatory networks. Nucleic Acids Research, 2019, 47, 570-581.	6.5	54
28	Redundant regulation. Nature Ecology and Evolution, 2018, 2, 418-419.	3.4	0
29	Finding RNA structure in the unstructured RBPome. BMC Genomics, 2018, 19, 154.	1.2	7
30	omniCLIP: probabilistic identification of protein-RNA interactions from CLIP-seq data. Genome Biology, 2018, 19, 183.	3.8	19
31	Determinants of promoter and enhancer transcription directionality in metazoans. Nature Communications, 2018, 9, 4472.	5.8	22
32	Ectopic Transplastomic Expression of a Synthetic MatK Gene Leads to Cotyledon-Specific Leaf Variegation. Frontiers in Plant Science, 2018, 9, 1453.	1.7	14
33	SSMART: sequence-structure motif identification for RNA-binding proteins. Bioinformatics, 2018, 34, 3990-3998.	1.8	21
34	RCAS: an RNA centric annotation system for transcriptome-wide regions of interest. Nucleic Acids Research, 2017, 45, e91-e91.	6.5	23
35	RNA-bioinformatics: Tools, services and databases for the analysis of RNA-based regulation. Journal of Biotechnology, 2017, 261, 76-84.	1.9	21
36	DDX54 regulates transcriptome dynamics during DNA damage response. Genome Research, 2017, 27, 1344-1359.	2.4	46

#	Article	IF	CITATIONS
37	A Multi-step Transcriptional and Chromatin State Cascade Underlies Motor Neuron Programming from Embryonic Stem Cells. Cell Stem Cell, 2017, 20, 205-217.e8.	5.2	86
38	RNA localization is a key determinant of neurite-enriched proteome. Nature Communications, 2017, 8, 583.	5.8	176
39	Beyond Read-Counts: Ribo-seq Data Analysis to Understand the Functions of the Transcriptome. Trends in Genetics, 2017, 33, 728-744.	2.9	101
40	Integrative classification of human coding and noncoding genes through RNA metabolism profiles. Nature Structural and Molecular Biology, 2017, 24, 86-96.	3.6	157
41	McEnhancer: predicting gene expression via semi-supervised assignment of enhancers to target genes. Genome Biology, 2017, 18, 199.	3.8	27
42	Divergent transcription and epigenetic directionality of human promoters. FEBS Journal, 2016, 283, 4214-4222.	2.2	22
43	CSEQ-SIMULATOR: A DATA SIMULATOR FOR CLIP-SEQ EXPERIMENTS. , 2016, , .		7
44	The mRNA-bound proteome of the early fly embryo. Genome Research, 2016, 26, 1000-1009.	2.4	66
45	High-Resolution Expression Map of the Arabidopsis Root Reveals Alternative Splicing and lincRNA Regulation. Developmental Cell, 2016, 39, 508-522.	3.1	245
46	Super-resolution ribosome profiling reveals unannotated translation events in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7126-E7135.	3.3	222
47	Detecting actively translated open reading frames in ribosome profiling data. Nature Methods, 2016, 13, 165-170.	9.0	368
48	Identifying RBP Targets with RIP-seq. Methods in Molecular Biology, 2016, 1358, 141-152.	0.4	9
49	CSEQ-SIMULATOR: A DATA SIMULATOR FOR CLIP-SEQ EXPERIMENTS. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2016, 21, 433-44.	0.7	6
50	Regnase-1 and Roquin Regulate a Common Element in Inflammatory mRNAs by Spatiotemporally Distinct Mechanisms. Cell, 2015, 161, 1058-1073.	13.5	296
51	Human Promoters Are Intrinsically Directional. Molecular Cell, 2015, 57, 674-684.	4.5	115
52	Transcriptional control of tissue formation throughout root development. Science, 2015, 350, 426-430.	6.0	128
53	Perspectives on Unidirectional versus Divergent Transcription. Molecular Cell, 2015, 60, 348-349.	4.5	19
54	JAMM: a peak finder for joint analysis of NGS replicates. Bioinformatics, 2015, 31, 48-55.	1.8	57

#	Article	IF	CITATIONS
55	Explicit DNase sequence bias modeling enables high-resolution transcription factor footprint detection. Nucleic Acids Research, 2014, 42, 11865-11878.	6.5	73
56	COUGER—co-factors associated with uniquely-bound genomic regions. Nucleic Acids Research, 2014, 42, W461-W467.	6.5	0
57	Improved transcript isoform discovery using ORF graphs. Bioinformatics, 2014, 30, 1958-1964.	1.8	5
58	Identification of the RNA recognition element of the RBPMS family of RNA-binding proteins and their transcriptome-wide mRNA targets. Rna, 2014, 20, 1090-1102.	1.6	64
59	Paired-End Analysis of Transcription Start Sites in <i>Arabidopsis</i> Reveals Plant-Specific Promoter Signatures Â. Plant Cell, 2014, 26, 2746-2760.	3.1	112
60	Global target mRNA specification and regulation by the RNA-binding protein ZFP36. Genome Biology, 2014, 15, R12.	13.9	141
61	Using machine learning to identify disease-relevant regulatory RNAs. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15516-15517.	3.3	0
62	MicroRNA target site identification by integrating sequence and binding information. Nature Methods, 2013, 10, 630-633.	9.0	56
63	The protein expression landscape of the <i>Arabidopsis</i> root. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6811-6818.	3.3	140
64	FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature, 2012, 492, 382-386.	13.7	656
65	Predicting cell-type–specific gene expression from regions of open chromatin. Genome Research, 2012, 22, 1711-1722.	2.4	227
66	PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biology, 2011, 12, R79.	13.9	332
67	Integrative Regulatory Mapping Indicates that the RNA-Binding Protein HuR Couples Pre-mRNA Processing and mRNA Stability. Molecular Cell, 2011, 43, 327-339.	4.5	605
68	Transcription Initiation Patterns Indicate Divergent Strategies for Gene Regulation at the Chromatin Level. PLoS Genetics, 2011, 7, e1001274.	1.5	124
69	A paired-end sequencing strategy to map the complex landscape of transcription initiation. Nature Methods, 2010, 7, 521-527.	9.0	153
70	Promoting developmental transcription. Development (Cambridge), 2010, 137, 15-26.	1.2	73
71	Evidence-ranked motif identification. Genome Biology, 2010, 11, R19.	13.9	77
72	A transcription factor affinity-based code for mammalian transcription initiation. Genome Research, 2009, 19, 644-656.	2.4	54

#	Article	IF	CITATIONS
73	Motif composition, conservation and condition-specificity of single and alternative transcription start sites in the Drosophila genome. Genome Biology, 2009, 10, R73.	13.9	86
74	A High-Resolution Root Spatiotemporal Map Reveals Dominant Expression Patterns. Science, 2007, 318, 801-806.	6.0	1,048
75	Spatial preferences of microRNA targets in 3' untranslated regions. BMC Genomics, 2007, 8, 152.	1.2	103
76	Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6055-6060.	3.3	257
77	Computational analysis of core promoters in the Drosophila genome. Genome Biology, 2002, 3, research0087.1.	13.9	374