
Matthew C Gibson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/281679/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of cilia-related genes on mitochondrial dynamics during Drosophila spermatogenesis. Developmental Biology, 2022, 482, 17-27.	2.0	5
2	Manipulation of Gene Activity in the Regenerative Model Sea Anemone, Nematostella vectensis. Methods in Molecular Biology, 2022, 2450, 437-465.	0.9	3
3	The feedback regulator Nord controls Dpp/BMP signaling via extracellular interaction with Dally in the Drosophila wing. Developmental Biology, 2022, 488, 91-103.	2.0	3
4	The architecture and operating mechanism of a cnidarian stinging organelle. Nature Communications, 2022, 13, .	12.8	11
5	Plasticity in parental effects confers rapid larval thermal tolerance in the estuarine anemone <i>Nematostella vectensis</i> . Journal of Experimental Biology, 2021, 224, .	1.7	10
6	Feeding-dependent tentacle development in the sea anemone Nematostella vectensis. Nature Communications, 2020, 11, 4399.	12.8	19
7	Wampa is a dynein subunit required for axonemal assembly and male fertility in Drosophila. Developmental Biology, 2020, 463, 158-168.	2.0	10
8	Hedgehog signaling is required for endomesodermal patterning and germ cell development in the sea anemone Nematostella vectensis. ELife, 2020, 9, .	6.0	11
9	Cell-Size Pleomorphism Drives Aberrant Clone Dispersal in Proliferating Epithelia. Developmental Cell, 2019, 51, 49-61.e4.	7.0	20
10	Electroporation of short hairpin RNAs for rapid and efficient gene knockdown in the starlet sea anemone, Nematostella vectensis. Developmental Biology, 2019, 448, 7-15.	2.0	55
11	Junctional tumor suppressors interact with 14-3-3 proteins to control planar spindle alignment. Journal of Cell Biology, 2019, 218, 1824-1838.	5.2	25
12	Commentary on "Regeneration, duplication and transdetermination in fragments of the leg disc of Drosophila melanogaster― Schubiger, G. (1971). Developmental Biology, 2019, 449, 63-82.	2.0	0
13	An adaptable chromosome preparation methodology for use in invertebrate research organisms. BMC Biology, 2018, 16, 25.	3.8	26
14	Epithelial integrity and cell division: Concerted cell cycle control. Cell Cycle, 2018, 17, 399-400.	2.6	1
15	An axial Hox code controls tissue segmentation and body patterning in <i>Nematostella vectensis</i> . Science, 2018, 361, 1377-1380.	12.6	121
16	Somatic clones heterozygous for recessive disease alleles of BMPR1A exhibit unexpected phenotypes in Drosophila. ELife, 2018, 7, .	6.0	6
17	Cell-Cycle-Coupled Oscillations in Apical Polarity and Intercellular Contact Maintain Order in Embryonic Epithelia. Current Biology, 2017, 27, 1381-1386.	3.9	31
18	Non-model model organisms. BMC Biology, 2017, 15, 55.	3.8	164

MATTHEW C GIBSON

#	Article	IF	CITATIONS
19	Developmental Patterning: Putting the Squeeze on Mis-specified Cells. Current Biology, 2016, 26, R204-R206.	3.9	1
20	Decapentaplegic and growth control in the developing Drosophila wing. Nature, 2015, 527, 375-378.	27.8	87
21	Epithelial Cell Division: Aurora Kicks Lgl to the Cytoplasmic Curb. Current Biology, 2015, 25, R43-R45.	3.9	7
22	Morphogen transport: theoretical and experimental controversies. Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 99-112.	5.9	34
23	Molecular Evolution of the Yap/Yorkie Proto-Oncogene and Elucidation of Its Core Transcriptional Program. Molecular Biology and Evolution, 2014, 31, 1375-1390.	8.9	47
24	Cell division and the maintenance of epithelial order. Journal of Cell Biology, 2014, 207, 181-188.	5.2	96
25	TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis. Nature Communications, 2014, 5, 5486.	12.8	137
26	Functional Genomic Analysis of the Periodic Transcriptome in the Developing Drosophila Wing. Developmental Cell, 2014, 29, 112-127.	7.0	17
27	On the origins of the mitotic shift in proliferating cell layers. Theoretical Biology and Medical Modelling, 2014, 11, 26.	2.1	5
28	Epithelial junctions maintain tissue architecture by directing planar spindle orientation. Nature, 2013, 500, 359-362.	27.8	168
29	Mechanisms of tentacle morphogenesis in the sea anemone <i>Nematostella vectensis</i> . Development (Cambridge), 2013, 140, 2212-2223.	2.5	36
30	A differential requirement for SUMOylation in proliferating and non-proliferating cells during Drosophila development. Development (Cambridge), 2012, 139, 2751-2762.	2.5	21
31	Control of the Mitotic Cleavage Plane by Local Epithelial Topology. Cell, 2011, 144, 427-438.	28.9	173
32	Interkinetic Nuclear Migration Is a Broadly Conserved Feature of Cell Division in Pseudostratified Epithelia. Current Biology, 2011, 21, 485-491.	3.9	131
33	Feedback regulation of <i>Drosophila</i> BMP signaling by the novel extracellular protein Larval Translucida. Development (Cambridge), 2011, 138, 715-724.	2.5	40
34	Identification and In Vivo Characterization of NvFP-7R, a Developmentally Regulated Red Fluorescent Protein of Nematostella vectensis. PLoS ONE, 2010, 5, e11807.	2.5	23
35	Chapter 4 Cell Topology, Geometry, and Morphogenesis in Proliferating Epithelia. Current Topics in Developmental Biology, 2009, 89, 87-114.	2.2	75
36	Modeling and Inferring Cleavage Patterns in Proliferating Epithelia. PLoS Computational Biology, 2009, 5, e1000412.	3.2	49

MATTHEW C GIBSON

#	Article	IF	CITATIONS
37	Epithelial topology. BioEssays, 2008, 30, 260-266.	2.5	28
38	Bicoid by the Numbers: Quantifying a Morphogen Gradient. Cell, 2007, 130, 14-16.	28.9	8
39	The emergence of geometric order in proliferating metazoan epithelia. Nature, 2006, 442, 1038-1041.	27.8	380
40	Extrusion and Death of DPP/BMP-Compromised Epithelial Cells in the Developing Drosophila Wing. Science, 2005, 307, 1785-1789.	12.6	182
41	Apicobasal polarization: epithelial form and function. Current Opinion in Cell Biology, 2003, 15, 747-752.	5.4	109
42	Lumenal Transmission of Decapentaplegic in Drosophila Imaginal Discs. Developmental Cell, 2002, 3, 451-460.	7.0	86
43	Analysis of twenty-four Gal4 lines inDrosophila melanogaster. Genesis, 2002, 34, 51-57.	1.6	102
44	Drosophila peripodial cells, more than meets the eye?. BioEssays, 2001, 23, 691-697.	2.5	42
45	Peripodial Cells Regulate Proliferation and Patterning of Drosophila Imaginal Discs. Cell, 2000, 103, 343-350.	28.9	104