Catherine M Cowan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2816336/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Curcumin as a Holistic Treatment for Tau Pathology. Frontiers in Pharmacology, 2022, 13, .	1.6	5
2	Suppression of tauâ€induced phenotypes by vitamin E demonstrates the dissociation of oxidative stress and phosphorylation in mechanisms of tau toxicity. Journal of Neurochemistry, 2021, 157, 684-694.	2.1	10
3	Conformational fingerprinting of tau variants and strains by Raman spectroscopy. RSC Advances, 2021, 11, 8899-8915.	1.7	15
4	Insulin-Mediated Changes in Tau Hyperphosphorylation and Autophagy in a Drosophila Model of Tauopathy and Neuroblastoma Cells. Frontiers in Neuroscience, 2019, 13, 801.	1.4	18
5	Conformational Evolution of Molecular Signatures during Amyloidogenic Protein Aggregation. ACS Chemical Neuroscience, 2019, 10, 4593-4611.	1.7	19
6	Raman Spectroscopy: An Emerging Tool in Neurodegenerative Disease Research and Diagnosis. ACS Chemical Neuroscience, 2018, 9, 404-420.	1.7	140
7	Alzheimer's Disease and Type 2 Diabetes: A Critical Assessment of the Shared Pathological Traits. Frontiers in Neuroscience, 2018, 12, 383.	1.4	168
8	Distinct phenotypes of three-repeat and four-repeat human tau in a transgenic model of tauopathy. Neurobiology of Disease, 2017, 105, 74-83.	2.1	71
9	What is the evidence that tau pathology spreads through prion-like propagation?. Acta Neuropathologica Communications, 2017, 5, 99.	2.4	272
10	Atypical, non-standard functions of the microtubule associated Tau protein. Acta Neuropathologica Communications, 2017, 5, 91.	2.4	157
11	Potential mechanisms and implications for the formation of tau oligomeric strains. Critical Reviews in Biochemistry and Molecular Biology, 2016, 51, 482-496.	2.3	64
12	The use of human neurons for novel drug discovery in dementia research. Expert Opinion on Drug Discovery, 2016, 11, 355-367.	2.5	12
13	Rescue from tau-induced neuronal dysfunction produces insoluble tau oligomers. Scientific Reports, 2015, 5, 17191.	1.6	42
14	Drosophila modelling axonal transport in the face of tau pathology. SpringerPlus, 2015, 4, L13.	1.2	0
15	Are Tau Aggregates Toxic or Protective in Tauopathies?. Frontiers in Neurology, 2013, 4, 114.	1.1	151
16	Low Endogenous and Chemical Induced Heat Shock Protein Induction in a 0N3Rtau-Expressing Drosophila Larval Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2013, 33, 1117-1133.	1.2	18
17	Drug repositioning for Alzheimer's disease. Nature Reviews Drug Discovery, 2012, 11, 833-846.	21.5	239
18	Increased throughput assays of locomotor dysfunction in Drosophila larvae. Journal of Neuroscience Methods, 2012, 203, 325-334.	1.3	21

CATHERINE M COWAN

#	Article	IF	CITATIONS
19	Using <i>Drosophila</i> models of neurodegenerative diseases for drug discovery. Expert Opinion on Drug Discovery, 2011, 6, 129-140.	2.5	14
20	Modelling Tauopathies inDrosophila: Insights from the Fruit Fly. International Journal of Alzheimer's Disease, 2011, 2011, 1-16.	1.1	14
21	Soluble hyper-phosphorylated tau causes microtubule breakdown and functionally compromises normal tau in vivo. Acta Neuropathologica, 2010, 120, 593-604.	3.9	124
22	Aβ exacerbates the neuronal dysfunction caused by human tau expression in a Drosophila model of Alzheimer's disease. Experimental Neurology, 2010, 223, 401-409.	2.0	81
23	A comparison of the neuronal dysfunction caused by Drosophila tau and human tau in a Drosophila model of tauopathies. Invertebrate Neuroscience, 2007, 7, 165-171.	1.8	38
24	Over-expression of tau results in defective synaptic transmission in Drosophila neuromuscular junctions. Neurobiology of Disease, 2005, 20, 918-928.	2.1	98