
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2816040/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Facile fabrication of robust, hyaluronic acid-surfaced and disulfide-crosslinked PLGA nanoparticles<br>for tumor-targeted and reduction-triggered release of docetaxel. Acta Biomaterialia, 2021, 125,<br>280-289.                                 | 4.1 | 38        |
| 2  | CD44-Targeted Multifunctional Nanomedicines Based on a Single-Component Hyaluronic Acid<br>Conjugate with All-Natural Precursors: Construction and Treatment of Metastatic Breast Tumors<br><i>in Vivo</i> . Biomacromolecules, 2020, 21, 104-113. | 2.6 | 23        |
| 3  | Targeted and Reduction-Sensitive Cross-Linked PLGA Nanotherapeutics for Safer and Enhanced<br>Chemotherapy of Malignant Melanoma. ACS Biomaterials Science and Engineering, 2020, 6, 2621-2629.                                                    | 2.6 | 6         |
| 4  | Systemic Delivery of NAC-1 siRNA by Neuropilin-Targeted Polymersomes Sensitizes Antiangiogenic<br>Therapy of Metastatic Triple-Negative Breast Cancer. Biomacromolecules, 2020, 21, 5119-5127.                                                     | 2.6 | 15        |
| 5  | A6 Peptide-Tagged Core-Disulfide-Cross-Linked Micelles for Targeted Delivery of Proteasome Inhibitor<br>Carfilzomib to Multiple Myeloma In Vivo. Biomacromolecules, 2020, 21, 2049-2059.                                                           | 2.6 | 23        |
| 6  | cRGD-decorated biodegradable polytyrosine nanoparticles for robust encapsulation and targeted delivery of doxorubicin to colorectal cancer in vivo. Journal of Controlled Release, 2019, 301, 110-118.                                             | 4.8 | 75        |
| 7  | Lipopepsomes: A novel and robust family of nano-vesicles capable of highly efficient encapsulation and tumor-targeted delivery of doxorubicin hydrochloride in vivo. Journal of Controlled Release, 2018, 272, 107-113.                            | 4.8 | 43        |
| 8  | Selective Cell Penetrating Peptideâ€Functionalized Polymersomes Mediate Efficient and Targeted<br>Delivery of Methotrexate Disodium to Human Lung Cancer In Vivo. Advanced Healthcare Materials,<br>2018, 7, e1701135.                             | 3.9 | 41        |
| 9  | Highly efficacious and specific anti-glioma chemotherapy by tandem nanomicelles co-functionalized<br>with brain tumor-targeting and cell-penetrating peptides. Journal of Controlled Release, 2018, 278, 1-8.                                      | 4.8 | 92        |
| 10 | Lipoyl Ester Terminated Star PLGA as a Simple and Smart Material for Controlled Drug Delivery<br>Application. Biomacromolecules, 2018, 19, 1368-1373.                                                                                              | 2.6 | 21        |
| 11 | Hyaluronic acid shell and disulfide-crosslinked core micelles for in vivo targeted delivery of bortezomib for the treatment of multiple myeloma. Acta Biomaterialia, 2018, 80, 288-295.                                                            | 4.1 | 39        |
| 12 | Exogenous vitamin C boosts the antitumor efficacy of paclitaxel containing reduction-sensitive shell-sheddable micelles in vivo. Journal of Controlled Release, 2017, 250, 9-19.                                                                   | 4.8 | 32        |
| 13 | Robust, Responsive, and Targeted PLGA Anticancer Nanomedicines by Combination of Reductively<br>Cleavable Surfactant and Covalent Hyaluronic Acid Coating. ACS Applied Materials & Interfaces,<br>2017, 9, 3985-3994.                              | 4.0 | 52        |
| 14 | A Smart Nanoâ€Prodrug Platform with Reactive Drug Loading, Superb Stability, and Fast Responsive<br>Drug Release for Targeted Cancer Therapy. Macromolecular Bioscience, 2017, 17, 1600518.                                                        | 2.1 | 19        |
| 15 | Micellar nanoformulation of lipophilized bortezomib: high drug loading, improved tolerability and targeted treatment of triple negative breast cancer. Journal of Materials Chemistry B, 2017, 5, 5658-5667.                                       | 2.9 | 18        |
| 16 | αvβ3 Integrin-targeted reduction-sensitive micellar mertansine prodrug: Superb drug loading, enhanced<br>stability, and effective inhibition of melanoma growth in vivo. Journal of Controlled Release, 2017,<br>259, 176-186.                     | 4.8 | 26        |
| 17 | cRGD/TAT Dual-Ligand Reversibly Cross-Linked Micelles Loaded with Docetaxel Penetrate Deeply into<br>Tumor Tissue and Show High Antitumor Efficacy in Vivo. ACS Applied Materials & Interfaces, 2017,<br>9, 35651-35663.                           | 4.0 | 48        |
| 18 | Glutathione-Sensitive Hyaluronic Acid-Mercaptopurine Prodrug Linked via Carbonyl Vinyl Sulfide: A<br>Robust and CD44-Targeted Nanomedicine for Leukemia. Biomacromolecules, 2017, 18, 3207-3214.                                                   | 2.6 | 50        |

| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Biodegradable Micelles Based on Poly(ethylene glycol)-b-polylipopeptide Copolymer: A Robust and<br>Versatile Nanoplatform for Anticancer Drug Delivery. ACS Applied Materials & Interfaces, 2017, 9,<br>27587-27595.                                   | 4.0  | 34        |
| 20 | EGFR and CD44 Dual-Targeted Multifunctional Hyaluronic Acid Nanogels Boost Protein Delivery to<br>Ovarian and Breast Cancers In Vitro and In Vivo. ACS Applied Materials & Interfaces, 2017, 9,<br>24140-24147.                                        | 4.0  | 108       |
| 21 | α <sub>v</sub> β <sub>3</sub> integrin-targeted micellar<br>mertansine prodrug effectively inhibits triple-negative breast cancer in vivo. International Journal of<br>Nanomedicine, 2017, Volume 12, 7913-7921.                                       | 3.3  | 24        |
| 22 | cRGD-installed docetaxel-loaded mertansine prodrug micelles: redox-triggered ratiometric dual drug<br>release and targeted synergistic treatment of B16F10 melanoma. Nanotechnology, 2017, 28, 295103.                                                 | 1.3  | 24        |
| 23 | cRGD-functionalized reduction-sensitive shell-sheddable biodegradable micelles mediate enhanced<br>doxorubicin delivery to human glioma xenografts in vivo. Journal of Controlled Release, 2016, 233,<br>29-38.                                        | 4.8  | 121       |
| 24 | Glutathione-Sensitive Hyaluronic Acid-SS-Mertansine Prodrug with a High Drug Content: Facile<br>Synthesis and Targeted Breast Tumor Therapy. Biomacromolecules, 2016, 17, 3602-3608.                                                                   | 2.6  | 35        |
| 25 | Bioresponsive and fluorescent hyaluronic acid-iodixanol nanogels for targeted X-ray computed tomography imaging and chemotherapy of breast tumors. Journal of Controlled Release, 2016, 244, 229-239.                                                  | 4.8  | 54        |
| 26 | Efficient and Targeted Suppression of Human Lung Tumor Xenografts in Mice with Methotrexate<br>Sodium Encapsulated in Allâ€Functionâ€inâ€One Chimeric Polymersomes. Advanced Materials, 2016, 28,<br>8234-8239.                                        | 11.1 | 56        |
| 27 | Facile Synthesis of Reductively Degradable Biopolymers Using Cystamine Diisocyanate as a Coupling<br>Agent. Biomacromolecules, 2016, 17, 882-890.                                                                                                      | 2.6  | 25        |
| 28 | Novel reversibly crosslinked chimaeric polypeptide polymersomes for active loading and intracellular release of doxorubicin hydrochloride. Journal of Controlled Release, 2015, 213, e56-e57.                                                          | 4.8  | 0         |
| 29 | Facile construction of dual-bioresponsive biodegradable micelles with superior extracellular<br>stability and activated intracellular drug release. Journal of Controlled Release, 2015, 210, 125-133.                                                 | 4.8  | 84        |
| 30 | Bioresponsive polymeric nanotherapeutics for targeted cancer chemotherapy. Nano Today, 2015, 10, 656-670.                                                                                                                                              | 6.2  | 159       |
| 31 | Chimaeric polymersomes based on poly(ethylene glycol)- b -poly( l -leucine)- b -poly( l -glutamic acid)<br>for efficient delivery of doxorubicin hydrochloride into drug-resistant cancer cells. Journal of<br>Controlled Release, 2015, 213, e87-e88. | 4.8  | 6         |
| 32 | Biodegradable glycopolymer-b-poly(Îμ-caprolactone) block copolymer micelles: versatile construction,<br>tailored lactose functionality, and hepatoma-targeted drug delivery. Journal of Materials Chemistry<br>B, 2015, 3, 2308-2317.                  | 2.9  | 41        |
| 33 | Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of<br>doxorubicin to drug resistant CD44+ human breast tumor xenografts. Journal of Controlled Release,<br>2015, 205, 144-154.                      | 4.8  | 250       |
| 34 | Enzymatically and Reductively Degradable α-Amino Acid-Based Poly(ester amide)s: Synthesis, Cell<br>Compatibility, and Intracellular Anticancer Drug Delivery. Biomacromolecules, 2015, 16, 597-605.                                                    | 2.6  | 51        |
| 35 | Micelles Based on Acid Degradable Poly(acetal urethane): Preparation, pH-Sensitivity, and Triggered<br>Intracellular Drug Release. Biomacromolecules, 2015, 16, 2228-2236.                                                                             | 2.6  | 103       |
|    |                                                                                                                                                                                                                                                        |      |           |

Biocompatible and bioreducible micelles fabricated from novel  $\hat{l}_{\pm}$ -amino acid-based poly(disulfide) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

| #  |                                                                                                                                                                                                                                                         | IF               | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| 37 | pH-Responsive Chimaeric Pepsomes Based on Asymmetric Poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10<br>Copolymer for Efficient Loading and Active Intracellular Delivery of Doxorubicin Hydrochloride.<br>Biomacromolecules, 2015, 16, 1322-1330. | 1f 50 752<br>2.6 | 61        |
| 38 | Anisamide-Decorated pH-Sensitive Degradable Chimaeric Polymersomes Mediate Potent and Targeted Protein Delivery to Lung Cancer Cells. Biomacromolecules, 2015, 16, 1726-1735.                                                                           | 2.6              | 73        |
| 39 | Functional polypeptide and hybrid materials: Precision synthesis via α-amino acid N-carboxyanhydride polymerization and emerging biomedical applications. Progress in Polymer Science, 2014, 39, 330-364.                                               | 11.8             | 310       |
| 40 | Glyco-Nanoparticles with Sheddable Saccharide Shells: A Unique and Potent Platform for<br>Hepatoma-Targeting Delivery of Anticancer Drugs. Biomacromolecules, 2014, 15, 900-907.                                                                        | 2.6              | 98        |
| 41 | Reduction and pH dual-bioresponsive crosslinked polymersomes for efficient intracellular delivery of proteins and potent induction of cancer cell apoptosis. Acta Biomaterialia, 2014, 10, 2159-2168.                                                   | 4.1              | 75        |
| 42 | Reduction-Responsive Polymeric Micelles and Vesicles for Triggered Intracellular Drug Release.<br>Antioxidants and Redox Signaling, 2014, 21, 755-767.                                                                                                  | 2.5              | 64        |
| 43 | cRGD-directed, NIR-responsive and robust AuNR/PEG–PCL hybrid nanoparticles for targeted chemotherapy of glioblastoma in vivo. Journal of Controlled Release, 2014, 195, 63-71.                                                                          | 4.8              | 81        |
| 44 | pH-sensitive polymeric nanoparticles for tumor-targeting doxorubicin delivery: concept and recent advances. Nanomedicine, 2014, 9, 487-499.                                                                                                             | 1.7              | 152       |
| 45 | Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers. Journal of Controlled Release, 2014, 190, 398-414.                                                                                             | 4.8              | 142       |
| 46 | <i>In Situ</i> Forming Hydrogels via Catalyst-Free and Bioorthogonal "Tetrazole–Alkene―Photo-Click<br>Chemistry. Biomacromolecules, 2013, 14, 2814-2821.                                                                                                | 2.6              | 79        |
| 47 | Reduction-sensitive degradable micellar nanoparticles as smart and intuitive delivery systems for cancer chemotherapy. Expert Opinion on Drug Delivery, 2013, 10, 1109-1122.                                                                            | 2.4              | 68        |
| 48 | Acetal-Linked Paclitaxel Prodrug Micellar Nanoparticles as a Versatile and Potent Platform for Cancer Therapy. Biomacromolecules, 2013, 14, 2772-2780.                                                                                                  | 2.6              | 165       |
| 49 | Galactose-Decorated Reduction-Sensitive Degradable Chimaeric Polymersomes as a Multifunctional<br>Nanocarrier To Efficiently Chaperone Apoptotic Proteins into Hepatoma Cells. Biomacromolecules,<br>2013, 14, 2873-2882.                               | 2.6              | 65        |
| 50 | Ligand-Directed Reduction-Sensitive Shell-Sheddable Biodegradable Micelles Actively Deliver<br>Doxorubicin into the Nuclei of Target Cancer Cells. Biomacromolecules, 2013, 14, 3723-3730.                                                              | 2.6              | 116       |
| 51 | A Simple and Versatile Synthetic Strategy to Functional Polypeptides via Vinyl Sulfone-Substituted<br><scp>l</scp> -Cysteine <i>N</i> -Carboxyanhydride. Macromolecules, 2013, 46, 6723-6730.                                                           | 2.2              | 56        |
| 52 | Redox and pH-responsive degradable micelles for dually activated intracellular anticancer drug release. Journal of Controlled Release, 2013, 169, 171-179.                                                                                              | 4.8              | 336       |
| 53 | Intracellular release of doxorubicin from core-crosslinked polypeptide micelles triggered by both pH and reduction conditions. Biomaterials, 2013, 34, 5262-5272.                                                                                       | 5.7              | 182       |
| 54 | Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery.<br>Biomaterials, 2013, 34, 3647-3657.                                                                                                             | 5.7              | 1,155     |

| #  | Article                                                                                                                                                                                                                                                                   | IF               | CITATIONS           |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|
| 55 | In Situ Forming Reduction-Sensitive Degradable Nanogels for Facile Loading and Triggered<br>Intracellular Release of Proteins. Biomacromolecules, 2013, 14, 1214-1222.                                                                                                    | 2.6              | 108                 |
| 56 | Functional Poly(ε-caprolactone)s via Copolymerization of ε-Caprolactone and Pyridyl<br>Disulfide-Containing Cyclic Carbonate: Controlled Synthesis and Facile Access to Reduction-Sensitive<br>Biodegradable Graft Copolymer Micelles. Macromolecules, 2013, 46, 699-707. | 2.2              | 90                  |
| 57 | DESIGN AND SYNTHESIS OF RAPIDLY PHOTO-CROSSLINKABLE BIOACTIVE BIODEGRADABLE HYDROGELS. Acta Polymerica Sinica, 2013, 013, 695-704.                                                                                                                                        | 0.0              | 0                   |
| 58 | Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: Promises, progress and prospects. Nano Today, 2012, 7, 467-480.                                                                                                                    | 6.2              | 530                 |
| 59 | Intracellular drug release nanosystems. Materials Today, 2012, 15, 436-442.                                                                                                                                                                                               | 8.3              | 216                 |
| 60 | Core-crosslinked pH-sensitive degradable micelles: A promising approach to resolve the extracellular stability versus intracellular drug release dilemma. Journal of Controlled Release, 2012, 164, 338-345.                                                              | 4.8              | 157                 |
| 61 | Biodegradable poly(ε-caprolactone)-g-poly(2-hydroxyethyl methacrylate) graft copolymer micelles as<br>superior nano-carriers for "smart―doxorubicin release. Journal of Materials Chemistry, 2012, 22,<br>11730.                                                          | 6.7              | 43                  |
| 62 | Reduction-Responsive Disassemblable Core-Cross-Linked Micelles Based on Poly(ethylene) Tj ETQq0 0 0 rgBT /Ov<br>Intracellular Anticancer Drug Release. Biomacromolecules, 2012, 13, 2429-2438.                                                                            | erlock 10<br>2.6 | Tf 50 467 To<br>181 |
| 63 | Reduction and temperature dual-responsive crosslinked polymersomes for targeted intracellular protein delivery. Journal of Materials Chemistry, 2011, 21, 19013.                                                                                                          | 6.7              | 128                 |
| 64 | Acid-Activatable Prodrug Nanogels for Efficient Intracellular Doxorubicin Release.<br>Biomacromolecules, 2011, 12, 3612-3620.                                                                                                                                             | 2.6              | 123                 |
| 65 | Unprecedented Access to Functional Biodegradable Polymers and Coatings. Macromolecules, 2011, 44, 6009-6016.                                                                                                                                                              | 2.2              | 88                  |
| 66 | Endosomal pH-Activatable Poly(ethylene oxide)- <i>graft</i> -Doxorubicin Prodrugs: Synthesis, Drug<br>Release, and Biodistribution in Tumor-Bearing Mice. Biomacromolecules, 2011, 12, 1460-1467.                                                                         | 2.6              | 145                 |
| 67 | Folate-conjugated crosslinked biodegradable micelles for receptor-mediated delivery of paclitaxel.<br>Journal of Materials Chemistry, 2011, 21, 5786.                                                                                                                     | 6.7              | 82                  |
| 68 | Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. Journal of Controlled Release, 2011, 152, 2-12.                                                                                                           | 4.8              | 1,187               |
| 69 | Biodegradable chimaeric polymersomes mediate highly efficient delivery of exogenous proteins into cells. Journal of Controlled Release, 2011, 152, e136-e137.                                                                                                             | 4.8              | 1                   |
| 70 | Poly(ethylene oxide) grafted with low molecular weight polyethylenimines for non-viral gene<br>transfer. Journal of Controlled Release, 2011, 152, e186-e187.                                                                                                             | 4.8              | 1                   |
| 71 | Rapidly pH-responsive degradable polymersomes for triggered release of hydrophilic and hydrophobic anticancer drugs. Journal of Controlled Release, 2011, 152, e7-e9.                                                                                                     | 4.8              | 2                   |
| 72 | Reduction-responsive shell-sheddable biodegradable micelles for intracellular doxorubicin delivery.<br>Journal of Controlled Release, 2011, 152, e84-e85.                                                                                                                 | 4.8              | 1                   |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Rapidly photo-crosslinked functional biodegradable hydrogels. Journal of Controlled Release, 2011, 152, e242-e243.                                                                                           | 4.8 | 0         |
| 74 | pH-Sensitive degradable polymersomes for triggered release of anticancer drugs: A comparative study with micelles. Journal of Controlled Release, 2010, 142, 40-46.                                          | 4.8 | 430       |
| 75 | The highly efficient delivery of exogenous proteins into cells mediated by biodegradable chimaeric polymersomes. Biomaterials, 2010, 31, 7575-7585.                                                          | 5.7 | 162       |
| 76 | Shell-Sheddable Micelles Based on Dextran-SS-Poly(ε-caprolactone) Diblock Copolymer for Efficient<br>Intracellular Release of Doxorubicin. Biomacromolecules, 2010, 11, 848-854.                             | 2.6 | 303       |
| 77 | Versatile Synthesis of Functional Biodegradable Polymers by Combining Ring-Opening Polymerization and Postpolymerization Modification via Michael-Type Addition Reaction. Macromolecules, 2010, 43, 201-207. | 2.2 | 160       |
| 78 | Reduction‣ensitive Reversibly Crosslinked Biodegradable Micelles for Triggered Release of<br>Doxorubicin. Macromolecular Bioscience, 2009, 9, 1254-1261.                                                     | 2.1 | 96        |
| 79 | Reversibly Stabilized Multifunctional Dextran Nanoparticles Efficiently Deliver Doxorubicin into the<br>Nuclei of Cancer Cells. Angewandte Chemie - International Edition, 2009, 48, 9914-9918.              | 7.2 | 419       |
| 80 | Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular<br>release of doxorubicin. Biomaterials, 2009, 30, 6358-6366.                                                 | 5.7 | 414       |