Ru Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2816040/publications.pdf

Version: 2024-02-01

		41344	6	50623
80	10,248	49		81
papers	citations	h-index		g-index
0.5	0.5	0.5		10407
85	85	85		10427
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. Journal of Controlled Release, 2011, 152, 2-12.	9.9	1,187
2	Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials, 2013, 34, 3647-3657.	11.4	1,155
3	Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: Promises, progress and prospects. Nano Today, 2012, 7, 467-480.	11.9	530
4	pH-Sensitive degradable polymersomes for triggered release of anticancer drugs: A comparative study with micelles. Journal of Controlled Release, 2010, 142, 40-46.	9.9	430
5	Reversibly Stabilized Multifunctional Dextran Nanoparticles Efficiently Deliver Doxorubicin into the Nuclei of Cancer Cells. Angewandte Chemie - International Edition, 2009, 48, 9914-9918.	13.8	419
6	Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin. Biomaterials, 2009, 30, 6358-6366.	11.4	414
7	Redox and pH-responsive degradable micelles for dually activated intracellular anticancer drug release. Journal of Controlled Release, 2013, 169, 171-179.	9.9	336
8	Functional polypeptide and hybrid materials: Precision synthesis via α-amino acid N-carboxyanhydride polymerization and emerging biomedical applications. Progress in Polymer Science, 2014, 39, 330-364.	24.7	310
9	Shell-Sheddable Micelles Based on Dextran-SS-Poly(ε-caprolactone) Diblock Copolymer for Efficient Intracellular Release of Doxorubicin. Biomacromolecules, 2010, 11, 848-854.	5.4	303
10	Reversibly crosslinked hyaluronic acid nanoparticles for active targeting and intelligent delivery of doxorubicin to drug resistant CD44+ human breast tumor xenografts. Journal of Controlled Release, 2015, 205, 144-154.	9.9	250
11	Intracellular drug release nanosystems. Materials Today, 2012, 15, 436-442.	14.2	216
12	Intracellular release of doxorubicin from core-crosslinked polypeptide micelles triggered by both pH and reduction conditions. Biomaterials, 2013, 34, 5262-5272.	11.4	182
13	Reduction-Responsive Disassemblable Core-Cross-Linked Micelles Based on Poly(ethylene) Tj ETQq1 1 0.784314 rg Intracellular Anticancer Drug Release. Biomacromolecules, 2012, 13, 2429-2438.	gBT /Overlo 5.4	lock 10 Tf 50 181
14	Acetal-Linked Paclitaxel Prodrug Micellar Nanoparticles as a Versatile and Potent Platform for Cancer Therapy. Biomacromolecules, 2013, 14, 2772-2780.	5.4	165
15	The highly efficient delivery of exogenous proteins into cells mediated by biodegradable chimaeric polymersomes. Biomaterials, 2010, 31, 7575-7585.	11.4	162
16	Versatile Synthesis of Functional Biodegradable Polymers by Combining Ring-Opening Polymerization and Postpolymerization Modification via Michael-Type Addition Reaction. Macromolecules, 2010, 43, 201-207.	4.8	160
17	Bioresponsive polymeric nanotherapeutics for targeted cancer chemotherapy. Nano Today, 2015, 10, 656-670.	11.9	159
18	Core-crosslinked pH-sensitive degradable micelles: A promising approach to resolve the extracellular stability versus intracellular drug release dilemma. Journal of Controlled Release, 2012, 164, 338-345.	9.9	157

#	Article	IF	Citations
19	pH-sensitive polymeric nanoparticles for tumor-targeting doxorubicin delivery: concept and recent advances. Nanomedicine, 2014, 9, 487-499.	3.3	152
20	Endosomal pH-Activatable Poly(ethylene oxide)- <i>graft</i> -Doxorubicin Prodrugs: Synthesis, Drug Release, and Biodistribution in Tumor-Bearing Mice. Biomacromolecules, 2011, 12, 1460-1467.	5.4	145
21	Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers. Journal of Controlled Release, 2014, 190, 398-414.	9.9	142
22	Reduction and temperature dual-responsive crosslinked polymersomes for targeted intracellular protein delivery. Journal of Materials Chemistry, 2011, 21, 19013.	6.7	128
23	Acid-Activatable Prodrug Nanogels for Efficient Intracellular Doxorubicin Release. Biomacromolecules, 2011, 12, 3612-3620.	5.4	123
24	cRGD-functionalized reduction-sensitive shell-sheddable biodegradable micelles mediate enhanced doxorubicin delivery to human glioma xenografts in vivo. Journal of Controlled Release, 2016, 233, 29-38.	9.9	121
25	Ligand-Directed Reduction-Sensitive Shell-Sheddable Biodegradable Micelles Actively Deliver Doxorubicin into the Nuclei of Target Cancer Cells. Biomacromolecules, 2013, 14, 3723-3730.	5.4	116
26	In Situ Forming Reduction-Sensitive Degradable Nanogels for Facile Loading and Triggered Intracellular Release of Proteins. Biomacromolecules, 2013, 14, 1214-1222.	5.4	108
27	EGFR and CD44 Dual-Targeted Multifunctional Hyaluronic Acid Nanogels Boost Protein Delivery to Ovarian and Breast Cancers In Vitro and In Vivo. ACS Applied Materials & Samp; Interfaces, 2017, 9, 24140-24147.	8.0	108
28	Micelles Based on Acid Degradable Poly(acetal urethane): Preparation, pH-Sensitivity, and Triggered Intracellular Drug Release. Biomacromolecules, 2015, 16, 2228-2236.	5.4	103
29	Glyco-Nanoparticles with Sheddable Saccharide Shells: A Unique and Potent Platform for Hepatoma-Targeting Delivery of Anticancer Drugs. Biomacromolecules, 2014, 15, 900-907.	5.4	98
30	Reductionâ€Sensitive Reversibly Crosslinked Biodegradable Micelles for Triggered Release of Doxorubicin. Macromolecular Bioscience, 2009, 9, 1254-1261.	4.1	96
31	Highly efficacious and specific anti-glioma chemotherapy by tandem nanomicelles co-functionalized with brain tumor-targeting and cell-penetrating peptides. Journal of Controlled Release, 2018, 278, 1-8.	9.9	92
32	Functional Poly($\hat{l}\mu$ -caprolactone)s via Copolymerization of $\hat{l}\mu$ -Caprolactone and Pyridyl Disulfide-Containing Cyclic Carbonate: Controlled Synthesis and Facile Access to Reduction-Sensitive Biodegradable Graft Copolymer Micelles. Macromolecules, 2013, 46, 699-707.	4.8	90
33	Unprecedented Access to Functional Biodegradable Polymers and Coatings. Macromolecules, 2011, 44, 6009-6016.	4.8	88
34	Facile construction of dual-bioresponsive biodegradable micelles with superior extracellular stability and activated intracellular drug release. Journal of Controlled Release, 2015, 210, 125-133.	9.9	84
35	Folate-conjugated crosslinked biodegradable micelles for receptor-mediated delivery of paclitaxel. Journal of Materials Chemistry, 2011, 21, 5786.	6.7	82
36	cRGD-directed, NIR-responsive and robust AuNR/PEG–PCL hybrid nanoparticles for targeted chemotherapy of glioblastoma in vivo. Journal of Controlled Release, 2014, 195, 63-71.	9.9	81

#	Article	IF	CITATIONS
37	<i>In Situ</i> Forming Hydrogels via Catalyst-Free and Bioorthogonal "Tetrazole–Alkene―Photo-Click Chemistry. Biomacromolecules, 2013, 14, 2814-2821.	5.4	79
38	Reduction and pH dual-bioresponsive crosslinked polymersomes for efficient intracellular delivery of proteins and potent induction of cancer cell apoptosis. Acta Biomaterialia, 2014, 10, 2159-2168.	8.3	75
39	cRGD-decorated biodegradable polytyrosine nanoparticles for robust encapsulation and targeted delivery of doxorubicin to colorectal cancer in vivo. Journal of Controlled Release, 2019, 301, 110-118.	9.9	75
40	Anisamide-Decorated pH-Sensitive Degradable Chimaeric Polymersomes Mediate Potent and Targeted Protein Delivery to Lung Cancer Cells. Biomacromolecules, 2015, 16, 1726-1735.	5.4	73
41	Reduction-sensitive degradable micellar nanoparticles as smart and intuitive delivery systems for cancer chemotherapy. Expert Opinion on Drug Delivery, 2013, 10, 1109-1122.	5.0	68
42	Galactose-Decorated Reduction-Sensitive Degradable Chimaeric Polymersomes as a Multifunctional Nanocarrier To Efficiently Chaperone Apoptotic Proteins into Hepatoma Cells. Biomacromolecules, 2013, 14, 2873-2882.	5.4	65
43	Reduction-Responsive Polymeric Micelles and Vesicles for Triggered Intracellular Drug Release. Antioxidants and Redox Signaling, 2014, 21, 755-767.	5.4	64
44	pH-Responsive Chimaeric Pepsomes Based on Asymmetric Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 4	172 Td (gl	,
44	Copolymer for Efficient Loading and Active Intracellular Delivery of Doxorubicin Hydrochloride. Biomacromolecules, 2015, 16, 1322-1330.	5.4	61
45	A Simple and Versatile Synthetic Strategy to Functional Polypeptides via Vinyl Sulfone-Substituted <scp>l</scp> -Cysteine <i>N</i> -Carboxyanhydride. Macromolecules, 2013, 46, 6723-6730.	4.8	56
46	Efficient and Targeted Suppression of Human Lung Tumor Xenografts in Mice with Methotrexate Sodium Encapsulated in Allâ€Functionâ€inâ€One Chimeric Polymersomes. Advanced Materials, 2016, 28, 8234-8239.	21.0	56
47	Bioresponsive and fluorescent hyaluronic acid-iodixanol nanogels for targeted X-ray computed tomography imaging and chemotherapy of breast tumors. Journal of Controlled Release, 2016, 244, 229-239.	9.9	54
48	Robust, Responsive, and Targeted PLGA Anticancer Nanomedicines by Combination of Reductively Cleavable Surfactant and Covalent Hyaluronic Acid Coating. ACS Applied Materials & Enterfaces, 2017, 9, 3985-3994.	8.0	52
49	Enzymatically and Reductively Degradable α-Amino Acid-Based Poly(ester amide)s: Synthesis, Cell Compatibility, and Intracellular Anticancer Drug Delivery. Biomacromolecules, 2015, 16, 597-605.	5.4	51
50	Glutathione-Sensitive Hyaluronic Acid-Mercaptopurine Prodrug Linked via Carbonyl Vinyl Sulfide: A Robust and CD44-Targeted Nanomedicine for Leukemia. Biomacromolecules, 2017, 18, 3207-3214.	5.4	50
51	cRGD/TAT Dual-Ligand Reversibly Cross-Linked Micelles Loaded with Docetaxel Penetrate Deeply into Tumor Tissue and Show High Antitumor Efficacy in Vivo. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35651-35663.	8.0	48
52	Biodegradable poly(ε-caprolactone)-g-poly(2-hydroxyethyl methacrylate) graft copolymer micelles as superior nano-carriers for "smart―doxorubicin release. Journal of Materials Chemistry, 2012, 22, 11730.	6.7	43
53	Lipopepsomes: A novel and robust family of nano-vesicles capable of highly efficient encapsulation and tumor-targeted delivery of doxorubicin hydrochloride in vivo. Journal of Controlled Release, 2018, 272, 107-113.	9.9	43
54	Biodegradable glycopolymer-b-poly($\hat{l}\mu$ -caprolactone) block copolymer micelles: versatile construction, tailored lactose functionality, and hepatoma-targeted drug delivery. Journal of Materials Chemistry B, 2015, 3, 2308-2317.	5.8	41

#	Article	IF	CITATIONS
55	Selective Cell Penetrating Peptideâ€Functionalized Polymersomes Mediate Efficient and Targeted Delivery of Methotrexate Disodium to Human Lung Cancer In Vivo. Advanced Healthcare Materials, 2018, 7, e1701135.	7.6	41
56	Hyaluronic acid shell and disulfide-crosslinked core micelles for in vivo targeted delivery of bortezomib for the treatment of multiple myeloma. Acta Biomaterialia, 2018, 80, 288-295.	8.3	39
57	Facile fabrication of robust, hyaluronic acid-surfaced and disulfide-crosslinked PLGA nanoparticles for tumor-targeted and reduction-triggered release of docetaxel. Acta Biomaterialia, 2021, 125, 280-289.	8.3	38
58	Glutathione-Sensitive Hyaluronic Acid-SS-Mertansine Prodrug with a High Drug Content: Facile Synthesis and Targeted Breast Tumor Therapy. Biomacromolecules, 2016, 17, 3602-3608.	5.4	35
59	Biodegradable Micelles Based on Poly(ethylene glycol)-b-polylipopeptide Copolymer: A Robust and Versatile Nanoplatform for Anticancer Drug Delivery. ACS Applied Materials & Interfaces, 2017, 9, 27587-27595.	8.0	34
60	Exogenous vitamin C boosts the antitumor efficacy of paclitaxel containing reduction-sensitive shell-sheddable micelles in vivo. Journal of Controlled Release, 2017, 250, 9-19.	9.9	32
61	Biocompatible and bioreducible micelles fabricated from novel α-amino acid-based poly(disulfide) Tj ETQq1 I	1 0.784314 rgE	3T /Overlock 27
62	$\hat{l}\pm v\hat{l}^2$ 3 Integrin-targeted reduction-sensitive micellar mertansine prodrug: Superb drug loading, enhanced stability, and effective inhibition of melanoma growth in vivo. Journal of Controlled Release, 2017, 259, 176-186.	9.9	26
63	Facile Synthesis of Reductively Degradable Biopolymers Using Cystamine Diisocyanate as a Coupling Agent. Biomacromolecules, 2016, 17, 882-890.	5.4	25
64	α _v β ₃ integrin-targeted micellar mertansine prodrug effectively inhibits triple-negative breast cancer in vivo. International Journal of Nanomedicine, 2017, Volume 12, 7913-7921.	6.7	24
65	cRGD-installed docetaxel-loaded mertansine prodrug micelles: redox-triggered ratiometric dual drug release and targeted synergistic treatment of B16F10 melanoma. Nanotechnology, 2017, 28, 295103.	2.6	24
66	CD44-Targeted Multifunctional Nanomedicines Based on a Single-Component Hyaluronic Acid Conjugate with All-Natural Precursors: Construction and Treatment of Metastatic Breast Tumors $\langle i \rangle$ in $Vivo \langle i \rangle$. Biomacromolecules, 2020, 21, 104-113.	5.4	23
67	A6 Peptide-Tagged Core-Disulfide-Cross-Linked Micelles for Targeted Delivery of Proteasome Inhibitor Carfilzomib to Multiple Myeloma In Vivo. Biomacromolecules, 2020, 21, 2049-2059.	5.4	23
68	Lipoyl Ester Terminated Star PLGA as a Simple and Smart Material for Controlled Drug Delivery Application. Biomacromolecules, 2018, 19, 1368-1373.	5.4	21
69	A Smart Nanoâ€Prodrug Platform with Reactive Drug Loading, Superb Stability, and Fast Responsive Drug Release for Targeted Cancer Therapy. Macromolecular Bioscience, 2017, 17, 1600518.	4.1	19
70	Micellar nanoformulation of lipophilized bortezomib: high drug loading, improved tolerability and targeted treatment of triple negative breast cancer. Journal of Materials Chemistry B, 2017, 5, 5658-5667.	5.8	18
71	Systemic Delivery of NAC-1 siRNA by Neuropilin-Targeted Polymersomes Sensitizes Antiangiogenic Therapy of Metastatic Triple-Negative Breast Cancer. Biomacromolecules, 2020, 21, 5119-5127.	5.4	15
72	Chimaeric polymersomes based on poly(ethylene glycol)- b -poly(l -leucine)- b -poly(l -glutamic acid) for efficient delivery of doxorubicin hydrochloride into drug-resistant cancer cells. Journal of Controlled Release, 2015, 213, e87-e88.	9.9	6

Ru Cheng

#	Article	IF	CITATIONS
73	Targeted and Reduction-Sensitive Cross-Linked PLGA Nanotherapeutics for Safer and Enhanced Chemotherapy of Malignant Melanoma. ACS Biomaterials Science and Engineering, 2020, 6, 2621-2629.	5.2	6
74	Rapidly pH-responsive degradable polymersomes for triggered release of hydrophilic and hydrophobic anticancer drugs. Journal of Controlled Release, 2011, 152, e7-e9.	9.9	2
75	Biodegradable chimaeric polymersomes mediate highly efficient delivery of exogenous proteins into cells. Journal of Controlled Release, 2011, 152, e136-e137.	9.9	1
76	Poly(ethylene oxide) grafted with low molecular weight polyethylenimines for non-viral gene transfer. Journal of Controlled Release, 2011, 152, e186-e187.	9.9	1
77	Reduction-responsive shell-sheddable biodegradable micelles for intracellular doxorubicin delivery. Journal of Controlled Release, 2011, 152, e84-e85.	9.9	1
78	Rapidly photo-crosslinked functional biodegradable hydrogels. Journal of Controlled Release, 2011, 152, e242-e243.	9.9	0
79	Novel reversibly crosslinked chimaeric polypeptide polymersomes for active loading and intracellular release of doxorubicin hydrochloride. Journal of Controlled Release, 2015, 213, e56-e57.	9.9	0
80	DESIGN AND SYNTHESIS OF RAPIDLY PHOTO-CROSSLINKABLE BIOACTIVE BIODEGRADABLE HYDROGELS. Acta Polymerica Sinica, 2013, 013, 695-704.	0.0	0