Karl Tryggvason

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2815957/publications.pdf

Version: 2024-02-01

		933447	996975
14	316	10	15
papers	citations	h-index	g-index
15	15	15	629
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Evaluating Capture Sequence Performance for Single-Cell CRISPR Activation Experiments. ACS Synthetic Biology, 2021, 10, 640-645.	3.8	3
2	Complex genetics of Alport and Goodpasture syndromes. Nature Reviews Nephrology, 2021, 17, 635-636.	9.6	2
3	Chemically defined and xenogeneic-free culture method for human epidermal keratinocytes on laminin-based matrices. Nature Protocols, 2020, 15, 694-711.	12.0	10
4	InÂVivo Generation of Post-infarct Human Cardiac Muscle by Laminin-Promoted Cardiovascular Progenitors. Cell Reports, 2019, 26, 3231-3245.e9.	6.4	36
5	Laminin-521 Protein Therapy for Glomerular Basement Membrane and Podocyte Abnormalities in a Model of Pierson Syndrome. Journal of the American Society of Nephrology: JASN, 2018, 29, 1426-1436.	6.1	30
6	Culturing functional pancreatic islets on $\hat{l}\pm 5$ -laminins and curative transplantation to diabetic mice. Matrix Biology, 2018, 70, 5-19.	3.6	23
7	Biologically relevant laminin as chemically defined and fully human platform for human epidermal keratinocyte culture. Nature Communications, 2018, 9, 4432.	12.8	22
8	Wnt $\hat{\Pi}^2$ -Catenin Stimulation and Laminins Support Cardiovascular Cell Progenitor Expansion from Human Fetal Cardiac Mesenchymal Stromal Cells. Stem Cell Reports, 2016, 6, 607-617.	4.8	20
9	Differentiation of Human Embryonic Stem Cells to Endothelial Progenitor Cells on Laminins in Defined and Xeno-free Systems. Stem Cell Reports, 2016, 7, 802-816.	4.8	47
10	A novel podocyte gene, semaphorin 3G, protects glomerular podocyte from lipopolysaccharide-induced inflammation. Scientific Reports, 2016, 6, 25955.	3.3	18
11	Human embryonic stem cells. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2016, 31, 2-12.	2.8	38
12	Knockdown of Tmem234 in zebrafish results in proteinuria. American Journal of Physiology - Renal Physiology, 2015, 309, F955-F966.	2.7	5
13	Laminin $\hat{l}\pm4$ Deficient Mice Exhibit Decreased Capacity for Adipose Tissue Expansion and Weight Gain. PLoS ONE, 2014, 9, e109854.	2.5	42
14	Concise Review: Animal Substance-Free Human Embryonic Stem Cells Aiming at Clinical Applications. Stem Cells Translational Medicine, 2014, 3, 1269-1274.	3.3	15