List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2815951/publications.pdf Version: 2024-02-01

CONCLUO

#	Article	IF	CITATIONS
1	CO2 Adsorption Performance of Na/K-Impregnated MgO. Environmental Science and Engineering, 2022, , 597-606.	0.1	0
2	NO formation mechanism of CH4/NH3 jet flames in hot co-flow under MILD-oxy condition: Effects of co-flow CO2 and H2O. Fuel, 2022, 313, 123030.	3.4	19
3	Structure and surface insight into a temperature-sensitive CaO-based CO2 sorbent. Chemical Engineering Journal, 2022, 435, 134960.	6.6	56
4	Combustion regimes and fuel-NO mechanism of CH4/NH3 jet diffusion flames in hot O2/CO2 co-flow. Fuel Processing Technology, 2022, 229, 107173.	3.7	18
5	Na2CO3 promoted CaO-based heat carrier for thermochemical energy storage in concentrated solar power plants. Chemical Engineering Journal, 2022, 435, 134852.	6.6	28
6	Screening loaded perovskite oxygen carriers for chemical looping steam methane reforming. Journal of Environmental Chemical Engineering, 2022, 10, 107315.	3.3	10
7	Improved quasi-cycle capacity method based on microcalorimetry strategy for the fast screening of amino acid salt absorbents for CO2 capture. Separation and Purification Technology, 2022, 289, 120767.	3.9	15
8	Promotion effects of oxygen vacancies on activity of Na-doped CeO2 catalysts for reverse water gas shift reaction. Applied Surface Science, 2022, 587, 152881.	3.1	15
9	Numerical study on heterogeneous reaction characteristics of a single coal char particle under air- and oxy-fuel combustion: Effects of particle motion. Fuel, 2022, 320, 123919.	3.4	10
10	Optimization of sol-gel combustion synthesis for calcium looping CO2 sorbents, part â: Effects of sol-gel preparation and combustion conditions. Separation and Purification Technology, 2022, 292, 121081.	3.9	10
11	Optimization of sol–gel combustion synthesis of calcium looping CO2 sorbents, Part â…;: Effects of thermal activation conditions. Separation and Purification Technology, 2022, 292, 121061.	3.9	3
12	Coal-direct chemical looping hydrogen generation with BaMnO3 perovskite oxygen carrier. Fuel Processing Technology, 2022, 233, 107296.	3.7	9
13	Advances in applications of ionic liquids for phase change CO2 capture. Chemical Engineering Journal, 2022, 445, 136767.	6.6	60
14	Effect of different organic compounds on the preparation of CaO-based CO2 sorbents derived from wet mixing combustion synthesis. Chinese Journal of Chemical Engineering, 2021, 36, 157-169.	1.7	15
15	The potential oxidation characteristics of CaCr2O4 during coal combustion with solid waste in a fluidized bed boiler: A thermogravimetric analysis. Chemosphere, 2021, 263, 127974.	4.2	8
16	Sorption enhanced steam reforming of ethanol over Ni-based catalyst coupling with high-performance CaO pellets. Chemical Engineering Journal, 2021, 406, 126903.	6.6	76
17	Reaction behaviors of a single coal char particle affected by oxygen and steam under oxy-fuel combustion. Fuel, 2021, 291, 120229.	3.4	18
18	Effect of steam addition on turbulence-chemistry interaction behaviors of pulverized coal MILD-oxy combustion. Fuel, 2021, 294, 120496.	3.4	19

#	Article	IF	CITATIONS
19	Development of a cordierite monolith reactor coated with CeO2-supported BaSrCo-based perovskite for chemical looping steam methane reforming. Fuel Processing Technology, 2021, 220, 106889.	3.7	20
20	Absorption performance and reaction mechanism study on a novel anhydrous phase change absorbent for CO2 capture. Chemical Engineering Journal, 2021, 420, 129897.	6.6	27
21	Low energy-consuming CO2 capture by phase change absorbents of amine/alcohol/H2O. Separation and Purification Technology, 2021, 275, 119181.	3.9	59
22	Glycine tailored effective CaO-based heat carriers for thermochemical energy storage in concentrated solar power plants. Energy Conversion and Management, 2021, 250, 114886.	4.4	29
23	CO2 hydrogenation on CeO2@Cu catalyst synthesized via a solution auto-combustion method. Journal of CO2 Utilization, 2021, 54, 101757.	3.3	3
24	Study on the effect of NaBr modification on CaO-based sorbent for CO2 capture and SO2 capture. Carbon Capture Science & Technology, 2021, 1, 100015.	4.9	33
25	Effect of Sodium Bromide on CaO-Based Sorbents Derived from Three Kinds of Sources for CO2 Capture. ACS Omega, 2020, 5, 17908-17917.	1.6	13
26	High-efficiency CuCe(rod) catalysts for CO2 hydrogenation with high Cu content. Fuel, 2020, 276, 118135.	3.4	19
27	Chemical looping combustion of lignite with the CaSO4–CoO mixed oxygen carrier. Journal of the Energy Institute, 2020, 93, 1229-1241.	2.7	28
28	Heterogeneous reactions behaviors of pulverized coal MILD combustion under different injection conditions. Fuel, 2020, 275, 117925.	3.4	25
29	CFD modeling on char surface reaction behavior of pulverized coal MILD-oxy combustion: Effects of oxygen and steam. Fuel Processing Technology, 2020, 204, 106405.	3.7	41
30	Reaction Characteristic Investigation of the Combined Template-Method-Made CaSO ₄ –Mn ₃ O ₄ Mixed Oxygen Carrier with Lignite. Energy & Fuels, 2019, 33, 8954-8966.	2.5	11
31	Computational study on the effect of gasification reaction on pulverized coal MILD combustion diluted by N2 and CO2. Applied Thermal Engineering, 2019, 158, 113806.	3.0	32
32	Development of BaSrCo-based perovskite for chemical-looping steam methane reforming: A study on synergistic effects of A-site elements and CeO2 support. Fuel, 2019, 253, 311-319.	3.4	49
33	Development of LaFeO3 modified with potassium as catalyst for coal char CO2 gasification. Journal of CO2 Utilization, 2019, 32, 163-169.	3.3	24
34	Effect of H2O/CO2 mixture on heat transfer characteristics of pulverized coal MILD-oxy combustion. Fuel Processing Technology, 2019, 184, 27-35.	3.7	56
35	Numerical investigation of the effects of different injection parameters on Damköhler number in the natural gas MILD combustion. Fuel, 2019, 237, 60-70.	3.4	38
36	Investigation on the thermodynamic calculation of a 35†MWth oxy-fuel combustion coal-fired boiler. International Journal of Greenhouse Gas Control, 2018, 71, 36-45.	2.3	24

#	Article	IF	CITATIONS
37	Increasing Porosity of Molded Calciumâ€Based Sorbents by Glucose Templating forÂCyclic CO ₂ Capture. Chemical Engineering and Technology, 2018, 41, 956-963.	0.9	21
38	Porous spherical calcium-based sorbents prepared by a bamboo templating method for cyclic CO2 capture. Fuel, 2018, 219, 94-102.	3.4	43
39	NO Removal from Flue Gas Using Conventional Imidazolium-Based Ionic Liquids at High Pressures. Energy & Fuels, 2018, 32, 6039-6048.	2.5	25
40	Oxygen Production for Oxy-fuel Combustion. , 2018, , 263-287.		2
41	Effect of lignin, cellulose and hemicellulose on calcium looping behavior of CaO-based sorbents derived from extrusion-spherization method. Chemical Engineering Journal, 2018, 334, 2520-2529.	6.6	98
42	Effect of Acid Gases on Elemental Mercury Removal in an Oxy-fuel CO ₂ Compression Process. Energy & Fuels, 2018, 32, 4334-4340.	2.5	21
43	Experimental Investigation and Process Simulation of Oxy-fuel Flue Gas Denitrification in CO ₂ Compression Process. Energy & Fuels, 2018, 32, 11666-11673.	2.5	4
44	A novel composite perovskite-based material for chemical-looping steam methane reforming to hydrogen and syngas. Energy Conversion and Management, 2018, 171, 12-19.	4.4	79
45	NaBr-Enhanced CaO-Based Sorbents with a Macropore-Stabilized Microstructure for CO ₂ Capture. Energy & Fuels, 2018, 32, 8571-8578.	2.5	22
46	Potential Synergy of Chlorine and Potassium and Sodium Elements in Carbonation Enhancement of CaO-Based Sorbents. ACS Sustainable Chemistry and Engineering, 2018, 6, 11677-11684.	3.2	47
47	Effects of acidic gases and operation parameters on denitrification in oxy-fuel CO2 compression process. Fuel, 2018, 234, 1285-1292.	3.4	6
48	Natural Calciumâ€Based Sorbents Doped with Sea Salt for Cyclic CO ₂ Capture. Chemical Engineering and Technology, 2017, 40, 522-528.	0.9	40
49	Oxygen desorption behavior of sol-gel derived perovskite-type oxides in a pressurized fixed bed reactor. Chemical Engineering Journal, 2017, 323, 340-346.	6.6	32
50	Cyclic CO2 Capture Behavior of Limestone Modified by Qinghai Lake Salt During Long-Term Calcium Looping Cycles. , 2017, , .		1
51	Synthesis of CeO2 Supported BaCoO3 Perovskites for Chemical-Looping Methane Reforming to Syngas and Hydrogen. , 2017, , .		1
52	Characteristics and performance of CaO-based high temperature CO ₂ sorbents derived from a sol–gel process with different supports. RSC Advances, 2016, 6, 79285-79296.	1.7	75
53	Synthesis and characteristics of BaSrCoFe-based perovskite as a functional material for chemical looping gasification of coal. International Journal of Hydrogen Energy, 2016, 41, 22846-22855.	3.8	25
54	Macropore-Stabilized Limestone Sorbents Prepared by the Simultaneous Hydration–Impregnation Method for High-Temperature CO ₂ Capture. Energy & Fuels, 2016, 30, 3219-3226.	2.5	57

#	Article	IF	CITATIONS
55	Fundamental and Technical Challenges for a Compatible Design Scheme of Oxyfuel Combustion Technology. Engineering, 2015, 1, 139-149.	3.2	48
56	Wet mixing combustion synthesis of CaO-based sorbents for high temperature cyclic CO2 capture. Chemical Engineering Journal, 2015, 267, 111-116.	6.6	75
57	Cyclic CO2 capture characteristics of a pellet derived from sol-gel CaO powder with Ca12Al14O33 support. Korean Journal of Chemical Engineering, 2015, 32, 934-938.	1.2	27
58	Tailor-Made Core–Shell CaO/TiO ₂ –Al ₂ O ₃ Architecture as a High-Capacity and Long-Life CO ₂ Sorbent. Environmental Science & Technology, 2015, 49, 8237-8245.	4.6	76
59	Effect of A/B-site substitution on oxygen production performance of strontium cobalt based perovskites for CO ₂ capture application. RSC Advances, 2015, 5, 39785-39790.	1.7	27
60	Effect of hematite addition to CaSO ₄ oxygen carrier in chemical looping combustion of coal char. RSC Advances, 2015, 5, 56362-56376.	1.7	32
61	Effect of sulfation on CO2 capture of CaO-based sorbents during calcium looping cycle. Fuel, 2014, 127, 124-130.	3.4	52
62	Calcium Looping for CO ₂ Capture at a Constant High Temperature. Energy & Fuels, 2014, 28, 307-318.	2.5	43
63	Development and characterization of Ba1â^'xSrxCo0.8Fe0.2O3â^'Î^ perovskite for oxygen production in oxyfuel combustion system. Chemical Engineering Journal, 2014, 255, 462-470.	6.6	24
64	Characteristics of SrCo1-xFexO3-ÎPerovskite Powders with Improved O2/CO2Production Performance for Oxyfuel Combustion. Bulletin of the Korean Chemical Society, 2014, 35, 1613-1618.	1.0	13
65	Effect of Sulfation during Oxy-Fuel Calcination Stage in Calcium Looping on CO ₂ Capture Performance of CaO-Based Sorbents. Energy & Fuels, 2013, 27, 1008-1014.	2.5	19
66	Manufacture of calcium-based sorbents for high temperature cyclic CO2 capture via a sol–gel process. International Journal of Greenhouse Gas Control, 2013, 12, 193-199.	2.3	80
67	Enhancing the performance of CaO/CuO based composite for CO2 capture in a combined Ca–Cu chemical looping process. Chemical Engineering Journal, 2013, 228, 75-86.	6.6	45
68	Calcium Looping Technology Using Improved Stability Nanostructured Sorbent for Cyclic CO2 Capture. , 2013, , 1171-1176.		0
69	Effect of Support Material on Carbonation and Sulfation of Synthetic CaO-Based Sorbents in Calcium Looping Cycle. Energy & Fuels, 2013, 27, 4824-4831.	2.5	59
70	Development of Binder-Supported CaSO4 Oxygen Carriers for Chemical Looping Combustion of Methane. , 2013, , 1311-1319.		0
71	Different Sorbents in Calcium Looping Cycle for CO2 Capture. , 2013, , 1053-1057.		0
72	Morphological Changes of Pure Micro―and Nano‣ized CaCO ₃ during a Calcium Looping Cycle for CO ₂ Capture. Chemical Engineering and Technology, 2012, 35, 547-554.	0.9	35

#	Article	IF	CITATIONS
73	Development and Testing of an Interconnected Fluidizedâ€Bed System for Chemical Looping Combustion. Chemical Engineering and Technology, 2012, 35, 532-538.	0.9	15
74	Development and performance of binder-supported CaSO4 oxygen carriers for chemical looping combustion. Chemical Engineering Journal, 2011, 171, 1018-1026.	6.6	34
75	Enhanced cyclic stability of CO2 adsorption capacity of CaO-based sorbents using La2O3 or Ca12Al14O33 as additives. Korean Journal of Chemical Engineering, 2011, 28, 1042-1046.	1.2	67
76	Investigation into compound CaSO4 oxygen carrier for chemical-looping combustion. Journal of Fuel Chemistry and Technology, 2011, 39, 161-168.	0.9	17
77	SGCS-made ultrafine CaO/Al2O3 sorbent for cyclic CO2 capture. Chinese Chemical Letters, 2011, 22, 615-618.	4.8	39
78	Development and Performance of CaO/La ₂ O ₃ Sorbents during Calcium Looping Cycles for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2010, 49, 11778-11784.	1.8	156