
Chimedullam Dalaijamts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2815948/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Beyond the RfD: Broad Application of a Probabilistic Approach to Improve Chemical Dose–Response Assessments for Noncancer Effects. Environmental Health Perspectives, 2018, 126, 067009.	6.0	48
2	A human population-based organotypic in vitro model for cardiotoxicity screening. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 441-452.	1.5	47
3	Montmorillonites Can Tightly Bind Clyphosate and Paraquat Reducing Toxin Exposures and Toxicity. ACS Omega, 2019, 4, 17702-17713.	3.5	33
4	Predicting tubular reabsorption with a human kidney proximal tubule tissue-on-a-chip and physiologically-based modeling. Toxicology in Vitro, 2020, 63, 104752.	2.4	28
5	Thorough QT/QTc in a Dish: An <i>In Vitro</i> Human Model That Accurately Predicts Clinical Concentrationâ€QTc Relationships. Clinical Pharmacology and Therapeutics, 2019, 105, 1175-1186.	4.7	23
6	Probabilistic risk assessment of exposure to leucomalachite green residues from fish products. Food and Chemical Toxicology, 2013, 62, 770-776.	3.6	18
7	A study of the quality and hygienic conditions of spring water in Mongolia. Journal of Water and Health, 2008, 6, 141-148.	2.6	16
8	Incorporation of the glutathione conjugation pathway in an updated physiologically-based pharmacokinetic model for perchloroethylene in mice. Toxicology and Applied Pharmacology, 2018, 352, 142-152.	2.8	8
9	Quantitative Characterization of Population-Wide Tissue- and Metabolite-Specific Variability in Perchloroethylene Toxicokinetics in Male Mice. Toxicological Sciences, 2021, 182, 168-182.	3.1	5
10	PBPK modeling of impact of nonalcoholic fatty liver disease on toxicokinetics of perchloroethylene in mice. Toxicology and Applied Pharmacology, 2020, 400, 115069.	2.8	4
11	Probabilistic assessment of aggregate risk for bisphenol A by integrating the currently available environmental data. Stochastic Environmental Research and Risk Assessment, 2016, 30, 1851-1861.	4.0	3
12	Differential toxicity of water versus gavage exposure to trichloroethylene in rats. Environmental Toxicology and Pharmacology, 2019, 68, 1-3.	4.0	1