
Thijs van Westen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2815751/publications.pdf Version: 2024-02-01

Τημε ναν Μεστεν

#	Article	lF	CITATIONS
1	Effect of Temperature Cycling on Ostwald Ripening. Crystal Growth and Design, 2018, 18, 4952-4962.	1.4	47
2	Determining Force Field Parameters Using a Physically Based Equation of State. Journal of Physical Chemistry B, 2011, 115, 7872-7880.	1.2	33
3	A critical evaluation of perturbation theories by Monte Carlo simulation of the first four perturbation terms in a Helmholtz energy expansion for the Lennard-Jones fluid. Journal of Chemical Physics, 2017, 147, 014503.	1.2	27
4	Optimizing Nonbonded Interactions of the OPLS Force Field for Aqueous Solutions of Carbohydrates: How to Capture Both Thermodynamics and Dynamics. Journal of Chemical Theory and Computation, 2018, 14, 6690-6700.	2.3	20
5	The isotropic-nematic phase transition of tangent hard-sphere chain fluids—Pure components. Journal of Chemical Physics, 2013, 139, 034505.	1.2	16
6	The phase behavior of linear and partially flexible hard-sphere chain fluids and the solubility of hard spheres in hard-sphere chain fluids. Journal of Chemical Physics, 2013, 138, 204905.	1.2	15
7	An analytical approximation for the orientation-dependent excluded volume of tangent hard sphere chains of arbitrary chain length and flexibility. Journal of Chemical Physics, 2012, 137, 044906.	1.2	13
8	An equation of state for the isotropic phase of linear, partially flexible and fully flexible tangent hard-sphere chain fluids. Molecular Physics, 2014, 112, 919-928.	0.8	12
9	Predicting the Kinetics of Ice Recrystallization in Aqueous Sugar Solutions. Crystal Growth and Design, 2018, 18, 2405-2416.	1.4	12
10	An analytical equation of state for describing isotropic-nematic phase equilibria of Lennard-Jones chain fluids with variable degree of molecular flexibility. Journal of Chemical Physics, 2015, 142, 244903.	1.2	11
11	Accurate first-order perturbation theory for fluids: <i>uf</i> -theory. Journal of Chemical Physics, 2021, 154, 041102.	1.2	11
12	Accurate thermodynamics of simple fluids and chain fluids based on first-order perturbation theory and second virial coefficients: <i>uv</i> -theory. Journal of Chemical Physics, 2021, 155, 244501.	1.2	11
13	Isotropic-nematic phase equilibria of hard-sphere chain fluids—Pure components and binary mixtures. Journal of Chemical Physics, 2015, 142, 064903.	1.2	8
14	Liquid-crystal phase equilibria of Lennard-Jones chains. Molecular Physics, 2016, 114, 895-908.	0.8	8
15	Algebraic second virial coefficient of the Mie m â^ 6 intermolecular potential based on perturbation theory. Journal of Chemical Physics, 2021, 154, 234502.	1.2	6
16	Predicting solvation free energies in non-polar solvents using classical density functional theory based on the PC-SAFT equation of state. Journal of Chemical Physics, 2021, 154, 244106.	1.2	6
17	Perturbation theories for fluids with short-ranged attractive forces: A case study of the Lennard-Jones spline fluid. Journal of Chemical Physics, 2022, 156, 104504.	1.2	6
18	The isotropic-nematic and nematic-nematic phase transition of binary mixtures of tangent hard-sphere chain fluids: An analytical equation of state. Journal of Chemical Physics, 2014, 140, 034504.	1.2	5

Thijs van Westen

#	Article	IF	CITATIONS
19	On the vapor-liquid equilibrium of attractive chain fluids with variable degree of molecular flexibility. Journal of Chemical Physics, 2015, 142, 224504.	1.2	5
20	An equation of state for Stockmayer fluids based on a perturbation theory for dipolar hard spheres. Journal of Chemical Physics, 2019, 151, 104102.	1.2	2
21	EquationÂof state and Helmholtz energy functional for fused heterosegmented hard chains. Physical Review E, 2022, 105, 034110.	0.8	1
22	Double-Hard-Sphere perturbation theory: a perturbation theory that is less dependent on the value of the hard-sphere diameter. Molecular Physics, 0, , .	0.8	0